OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22874–22881

Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor

K. Salit, M. Salit, Subramanian Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22874-22881 (2011)
http://dx.doi.org/10.1364/OE.19.022874


View Full Text Article

Enhanced HTML    Acrobat PDF (1060 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an ultra-low light level optical modulator using a tapered nano fiber embedded in a hot rubidium vapor. The control and signal beams are co-propagating but orthogonally polarized, leading to a degenerate V-system involving coherent superpositions of Zeeman sublevels. The modulation is due primarily to the quantum Zeno effect for the signal beam induced by the control beam. For a control power of 40 nW and a signal power of 100 pW, we observe near 100% modulation. The ultra-low power level needed for the modulation is due to a combination of the Zeno effect and the extreme field localization in the evanescent field around the taper.

© 2011 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(250.4110) Optoelectronics : Modulators

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 15, 2011
Revised Manuscript: September 27, 2011
Manuscript Accepted: October 3, 2011
Published: October 27, 2011

Citation
K. Salit, M. Salit, Subramanian Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shahriar, "Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor," Opt. Express 19, 22874-22881 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22874


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett.81(17), 3611–3614 (1998). [CrossRef]
  2. R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt.51(16-18), 2441–2448 (2004). [CrossRef]
  3. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science308, 672–674 (2005).
  4. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express15(3), 924–929 (2007). [CrossRef] [PubMed]
  5. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett.102(20), 203902 (2009). [CrossRef] [PubMed]
  6. V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett.35(13), 2287–2289 (2010). [CrossRef] [PubMed]
  7. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett.100(23), 233602 (2008). [CrossRef] [PubMed]
  8. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express12(10), 2258–2263 (2004). [CrossRef] [PubMed]
  9. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett.105(17), 173602 (2010). [CrossRef] [PubMed]
  10. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25(19), 1415–1417 (2000). [CrossRef] [PubMed]
  11. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003). [CrossRef] [PubMed]
  12. D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys.7(2), 159–165 (2011). [CrossRef]
  13. T. Allsop, F. Floreani, K. P. Jedrzejewski, P. V. S. Marques, R. Romero, D. J. Webb, and I. Bennion, “Spectral characteristics of tapered LPG device as a sensing element for refractive index and temperature,” J. Lightwave Technol.24(2), 870–878 (2006). [CrossRef]
  14. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express13(13), 5087–5092 (2005). [CrossRef] [PubMed]
  15. K. P. Nayak, F. L. Le Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A79(2), 021801(R) (2009). [CrossRef]
  16. V. G. Minogin and S. N. Chormaic, “Manifestation of the van der Waals Surface Interaction in the Spontaneous Emission of Atoms into an Optical Nanofiber,” Laser Phys.20(1), 32–37 (2010). [CrossRef]
  17. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104(20), 203603 (2010). [CrossRef] [PubMed]
  18. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically Induced Transparency,” Science330(6010), 1520–1523 (2010). [CrossRef] [PubMed]
  19. J. M. Ward, Y. Wu, V. G. Minogin, and S. N. Chormaic, “Trapping of a microsphere pendulum resonator in an optical potential,” Phys. Rev. A79(5), 053839 (2009). [CrossRef]
  20. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber,” Phys. Rev. Lett.97(2), 023603 (2006). [CrossRef] [PubMed]
  21. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics1(6), 331–335 (2007). [CrossRef]
  22. B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys.18(4), 756–763 (1977). [CrossRef]
  23. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A41(5), 2295–2300 (1990). [CrossRef] [PubMed]
  24. Y. Huang, J. B. Altepeter, and P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A82(6), 063826 (2010). [CrossRef]
  25. C. Cohen-Tannoudji and S. Reynaud; “Dressed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam,” J. Phys. B10(3), 345–363 (1977) (old 16). [CrossRef]
  26. E. R. I. Abraham and E. A. Cornell, “Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems,” Appl. Opt.37(10), 1762–1763 (1998). [CrossRef] [PubMed]
  27. B. V. Zhdanov and R. J. Knize, “Progress in alkali lasers development,” Proc. SPIE6874, 68740F, 68740F-12 (2008) (and references therein). [CrossRef]
  28. S. M. Hendrickson, T. B. Pittman, and J. D. Franson, “Nonlinear transmission through a tapered fiber in rubidium vapor,” J. Opt. Soc. Am. B26(2), 267 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited