OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22923–22928

Teflon-coated microfiber resonator with weak temperature dependence

Ye Chen, Fei Xu, and Yan-qing Lu  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 22923-22928 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (874 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A temperature insensitive three-turn microfiber coil resonator (MCR) is demonstrated by embedding it in Teflon with opposite thermo-optic coefficient. The temperature dependence of a MCR strongly depends on the microfiber size which controls the ratio of thermal effect contributions from silica and polymer. Fabricated from a ~3μm-diameter microfiber, the temperature dependence of our MCR is compensated to less than 6pm/°C. Further suppression of the temperature dependence can be realized with ideal microfiber radius.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature

ToC Category:

Original Manuscript: September 2, 2011
Revised Manuscript: September 26, 2011
Manuscript Accepted: September 26, 2011
Published: October 27, 2011

Ye Chen, Fei Xu, and Yan-qing Lu, "Teflon-coated microfiber resonator with weak temperature dependence," Opt. Express 19, 22923-22928 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010). [CrossRef]
  2. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010). [CrossRef]
  3. Y. M. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced High Q,” IEEE Photon. Technol. Lett. 22, 1638–1640 (2010).
  4. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006). [CrossRef]
  5. G. Vienne, A. Coillet, P. Grelu, M. El Amraoui, J.-C. Jules, F. Smektala, and L. Tong, “Demonstration of a reef knot microfiber resonator,” Opt. Express 17(8), 6224–6229 (2009). [CrossRef] [PubMed]
  6. F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007). [CrossRef] [PubMed]
  7. N. G. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16(20), 16247–16254 (2008). [CrossRef] [PubMed]
  8. M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12(10), 2303–2316 (2004). [CrossRef]
  9. F. Xu and G. Brambilla, “Manufacture of 3-D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19(19), 1481–1483 (2007). [CrossRef]
  10. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  11. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008). [CrossRef]
  12. R. Lorenzi, Y. M. Jung, and G. Brambilla, “In-line absorption sensor based on coiled optical microfiber,” Appl. Phys. Lett. 98(17), 173504 (2011). [CrossRef]
  13. T. Lee, N. G. R. Broderick, and G. Brambilla, “Transmission properties of microcoils based on twisted birefringent fibre,” Opt. Commun. 284(7), 1837–1841 (2011). [CrossRef]
  14. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009). [CrossRef]
  15. X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Opt. Commun. 282(18), 3817–3819 (2009). [CrossRef]
  16. “Teflon® AF properties,” http://www2.dupont.com/Teflon_Industrial/en_US/products/product_by_name/teflon_af/properties.html .
  17. . “Teflon,” http://www.lenntech.com/teflon.htm .
  18. S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and Y. Kokubun, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11(9), 1138–1140 (1999). [CrossRef]
  19. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004). [CrossRef] [PubMed]
  20. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009). [CrossRef] [PubMed]
  21. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007). [CrossRef] [PubMed]
  22. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor: erratum,” Opt. Express 15(15), 9385 (2007). [CrossRef] [PubMed]
  23. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16(2), 1062–1067 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited