OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23067–23077

Finite-Difference Time-Domain Analysis of Photonic Crystal Slab Cavities with Two-Level Systems

Hideaki Taniyama, Hisashi Sumikura, and Masaya Notomi  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23067-23077 (2011)
http://dx.doi.org/10.1364/OE.19.023067


View Full Text Article

Enhanced HTML    Acrobat PDF (1517 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we report the numerical simulation of an atom-cavity interaction within photonic crystal nano-cavities. The numerical model is based on a damping oscillator description of a dipole current and it is implemented with a finite-difference time-domain method. Using the method, we successfully simulate the atom-cavity mode field interactions of a two-level system embedded in a photonic crystal cavity under several coupling strength conditions. We show that enhancement and suppression of optical emission rate from a two-level system are also shown by this model.

© 2011 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Quantum Optics

Citation
Hideaki Taniyama, Hisashi Sumikura, and Masaya Notomi, "Finite-Difference Time-Domain Analysis of Photonic Crystal Slab Cavities with Two-Level Systems," Opt. Express 19, 23067-23077 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23067


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London)425, 944–947 (2003). [CrossRef]
  2. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater.4, 207–210 (2005). [CrossRef]
  3. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88, 041112 (2006). [CrossRef]
  4. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18, 15859–15869 (2010). [CrossRef] [PubMed]
  5. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature (London)421, 925–928 (2003). [CrossRef]
  6. Kerry J. Vahala, “Optical microcavities,” Nature (London)424, 839–846 (2003). [CrossRef]
  7. M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, “Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot,” Phys. Rev. B80, 155326 (2009). [CrossRef]
  8. Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Impact of electron-phonon interactions on quantum-dot cavity quantum electrodynamics,” arXive:0908.0788v1 [cond-mat.mes-hall].
  9. T. Tawara, H. Kamada, T. Tanabe, T. Sogawa, H. Okamoto, P. Yao, P. K. Pathak, and S. Hughes, “Cavity-QED assisted attraction between a cavity mode and an exciton mode in a planar photonic-crystal cavity,” Opt. Express18, 2719–2728 (2010). [CrossRef] [PubMed]
  10. J. M. Raimond, M. Brune, and S. Haroche, “, “Manipulating quantum entanglement atoms and photons in a cavity,” Rev. Mod. Phys.73, 565–582 (2001). [CrossRef]
  11. T. Yoshie, Scherer, J. Hendrickson, G. Khitroya, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London)432, 200–203 (2004). [CrossRef]
  12. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Physics2, 81–90 (2006). [CrossRef]
  13. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London)445, 896–899 (2007). [CrossRef]
  14. G. S. Agarwal and R. R. Puri, “Exact quantum-electrodynamics results for scattering emission, and absorption from a Rydberg atom in a cavity with arbitrary Q,” Phys. Rev. A33, 1757–1764 (1986). [CrossRef] [PubMed]
  15. H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, “Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators,” Phys. Rev. A40,, 5516–5519 (1989). [CrossRef] [PubMed]
  16. F. P. Laussy, E. del Valle, and C. Tejedor, “Strong Coupling of Quantum Dots in Microcavities,” Phys. Rev. Lett.101, 083601 (2008). [CrossRef] [PubMed]
  17. A. Taflove and S. C. Hagness, “Computational Electronics: The Finite-Difference Time-Domain Method,” 2nd ed (Artech House, Norwood2000).
  18. J. Vuckovic, O. Painter, Y. Xu, and A. Yariv, “Finite-Difference Time-Domain Calculation of the Spontaneous Emission Coupling Factor in Optical Microcavities,” IEEE J. Quant. Electron.35, 1168–1175 (1999). [CrossRef]
  19. G. M. Slavcheva, J. M. Arnold, and R. W. Ziolkowski, IEEE J. Select. Top. Quantum Electron.10, 1052–1062 (2004). [CrossRef]
  20. D. Walls and G. Milburn, “Quantum Optics” (Springer-Verlag, Berlin, 1994).
  21. J. J. Childs, K. An, R. R. Dasari, and M. S. Feld, “Single Atom Emission in an Optical Resonator,” in Cavity Quantum Electrodynamics, P. R. Berman, Editor, Academic Press, San Diego (1994).
  22. J. D. Jackson, “Classical Electrodynamics,” 3rd ed, (Wiley, NY1999).
  23. E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev.69, 681 (1946).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited