OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23078–23084

Highly-ordered vertical Si nanowire/nanowall decorated solar cells

Jian Wang, Zhenhua Li, Navab Singh, and Sungjoo Lee  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23078-23084 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Highly-ordered vertical nanowire and nanowall arrays are studied on Si solar cell surface. The nanowall textured solar cell is found to be more effective in reducing the overall optical reflectance, resulting in higher short circuit current (Jsc = 24.9 mA/cm2) over nanowire structured (Jsc = 23.3 mA/cm2) and planar (Jsc = 17.5 mA/cm2) solar cells. The extracted energy conversion efficiency (η) from planar solar cell is 7.1%, while nanowire/nanowall cells show efficiency of 8.2% and 6.3%, respectively. If corrected with series resistance (Rs), nanowall solar cell exhibits the highest η of 9.8% in this experiment. A careful study of the series resistance from different types of the nanostructures is also presented.

© 2011 OSA

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Energy

Original Manuscript: July 5, 2011
Revised Manuscript: August 21, 2011
Manuscript Accepted: September 20, 2011
Published: October 28, 2011

Jian Wang, Zhenhua Li, Navab Singh, and Sungjoo Lee, "Highly-ordered vertical Si nanowire/nanowall decorated solar cells," Opt. Express 19, 23078-23084 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  2. L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007). [CrossRef]
  3. R. A. Street, P. Qi, R. Lujan, and W. S. Wong, “Reflectivity of disordered silicon nanowires,” Appl. Phys. Lett. 93(16), 163109 (2008). [CrossRef]
  4. J. S. Li, H. Y. Yu, S. M. Wong, G. Zhang, G. Q. Lo, and D. L. Kwong, “Surface nanostructure optimization for solar energy harvesting in Si thin film based solar cells,” in 2009 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2009), pp. 1–4.
  5. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007). [CrossRef]
  6. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007). [CrossRef] [PubMed]
  7. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1(11), 1062–1067 (2005). [CrossRef] [PubMed]
  8. S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, G. Q. Lo, and D. L. Kwong, “Design high-efficiency Si nanopillar-array-textured thin-film solar cell,” IEEE Electron Device Lett. 31(4), 335–337 (2010). [CrossRef]
  9. L. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004). [CrossRef]
  10. M. Born, E. Wolf, and A. Bhatia, Principles of Optics (Pergamon, Oxford, 1975).
  11. B. S. Richards, “Single-material TiO2 double-layer antireflection coatings,” Sol. Energy Mater. Sol. Cells 79(3), 369–390 (2003). [CrossRef]
  12. J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev. 38(8), 1925–1934 (1991). [CrossRef]
  13. D. Schroder and D. Meier, “Solar cell contact resistance—a review,” IEEE Trans. Electron. Dev. 31(5), 637–647 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited