OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23111–23117

Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode

Tae Hoon Seo, Kang Jea Lee, Ah Hyun Park, Chang-Hee Hong, Eun-Kyung Suh, Seung Jin Chae, Young Hee Lee, Tran Viet Cuong, Viet Hung Pham, Jin Suk Chung, Eui Jung Kim, and Seong-Ran Jeon  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23111-23117 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1139 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report GaN-based near ultraviolet (UV) light emitting diode (LED) that combines indium tin oxide (ITO) nanodot nodes with two-dimensional graphene film as a UV-transparent current spreading electrode (TCSE) to give rise to excellent UV emission efficiency. The light output power of 380 nm emitting UV-LEDs with graphene film on ITO nanodot nodes as TCSE was enhanced remarkably compared to conventional TCSE. The increase of the light output power is attributed to high UV transmittance of graphene, effective current spreading and injection, and texturing effect by ITO nanodots.

© 2011 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.0230) Optical devices : Optical devices
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Optical Devices

Original Manuscript: August 25, 2011
Revised Manuscript: October 6, 2011
Manuscript Accepted: October 13, 2011
Published: October 31, 2011

Tae Hoon Seo, Kang Jea Lee, Ah Hyun Park, Chang-Hee Hong, Eun-Kyung Suh, Seung Jin Chae, Young Hee Lee, Tran Viet Cuong, Viet Hung Pham, Jin Suk Chung, Eui Jung Kim, and Seong-Ran Jeon, "Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode," Opt. Express 19, 23111-23117 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008). [CrossRef]
  2. N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, “Blue emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24), 243506-1–243506-3 (2007).
  3. W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phys. Lett. 75(10), 1360–1362 (1999). [CrossRef]
  4. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84(6), 855–857 (2004). [CrossRef]
  5. D. W. Kim, H. Y. Lee, G. Y. Yeom, and Y. J. Sung, “A study of transparent contact to vertical GaN-based light-emitting diodes,” J. Appl. Phys. 98(5), 0531021–0531024 (2005).
  6. T. H. Seo, T. S. Oh, T. S. Lee, H. Jeong, J. D. Kim, H. Kim, A. H. Park, K. J. Lee, C.-H. Hong, and E.-K. Suh, “Enhanced Light Extraction in GaN-Based Light Emitting Diodes with Holographically Fabricated Concave Hemisphere-Shaped Patterning on Indium-Tin-Oxide Layer,” Jpn. J. Appl. Phys. 49, 092101-1–092101-3 (2010).
  7. J.-K. Sheu, M.-L. Lee, Y. S. Lu, and K. W. Shu, “Ga-Doped ZnO Transparent Conductive Oxide Films Applied to GaN-Based Light-Emitting Diodes for Improving Light Extraction Efficiency,” IEEE J. Quantum Electron. 44(12), 1211–1218 (2008). [CrossRef]
  8. T.-Y. Park, Y.-S. Choi, J.-W. Kang, J.-H. Jeong, S.-J. Park, D. M. Jeon, J. W. Kim, and Y. C. Kim, “Enhanced optical power and low forward voltage of GaN-based light-emitting diodes with Ga-doped ZnO transparent conducting layer,” Appl. Phys. Lett. 96(5), 051124-1–051124-3 (2010).
  9. S. H. Tu, C. J. Lan, S. H. Wang, M. L. Lee, K. H. Chang, R. M. Lin, J. Y. Chang, and J. K. Sheu, “InGaN gallium nitride light-emitting diodes with reflective electrode pads and textured gallium-doped ZnO contact layer,” Appl. Phys. Lett. 96(13), 133504-1–133504-3 (2010).
  10. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef] [PubMed]
  11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]
  12. G. H. Jo, M. H. Choe, C. Y. Cho, J. H. Kim, W. J. Park, S. C. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. H. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology 21, 175201-1–175201-6 (2010).
  13. T. H. Seo, K. J. Lee, T. S. Oh, Y. S. Lee, H. Jeong, A. H. Park, H. Kim, Y. R. Choi, E.-K. Suh, T. V. Cuong, V. H. Pham, J. S. Chung, and E. J. Kim, “Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode,” Appl. Phys. Lett. 98(25), 251114-1–251114-3 (2011).
  14. X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett. 8(1), 323–327 (2008). [CrossRef] [PubMed]
  15. T. V. Cuong, V. H. Pham, J. S. Chung, E. W. Shin, D. H. Yoo, S. H. Hahn, J. S. Huh, G. H. Rue, E. J. Kim, S. H. Hur, G. S. Rue, E. J. Kim, S. H. Hur, and P. A. Kohl, “Solution-processed ZnO-chemically converted graphene gas sensor,” Mater. Lett. 64(22), 2479–2482 (2010). [CrossRef]
  16. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. (Deerfield Beach Fla.) 22(35), 3906–3924 (2010). [CrossRef] [PubMed]
  17. W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc. 80(6), 1339–1339 (1958). [CrossRef]
  18. F. Guneş, H.-J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano 4(8), 4595–4600 (2010). [CrossRef] [PubMed]
  19. T. V. Cuong, V. H. Pham, Q. T. Tran, S. H. Hahn, J. S. Chung, E. W. Shin, and E. J. Kim, “Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide,” Mater. Lett. 64(3), 399–401 (2010). [CrossRef]
  20. V. H. Pham, T. V. Cuong, S. H. Hur, E. W. Shin, J. S. Kim, J. S. Chung, and E. J. Kim, “Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating,” Carbon 48(7), 1945–1951 (2010). [CrossRef]
  21. Z. Luo, Y. Lu, L. A. Somers, and A. T. C. Johnson, “High yield preparation of macroscopic graphene oxide membranes,” J. Am. Chem. Soc. 131(3), 898–899 (2009). [CrossRef] [PubMed]
  22. D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101–105 (2008). [CrossRef] [PubMed]
  23. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. D. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009). [CrossRef] [PubMed]
  24. H. Ago, T. Kugler, F. Cacialli, K. Petritsch, R. H. Friend, W. R. Salaneck, Y. Ono, T. Yamabe, and K. Tanaka, “Work function of purified and oxidised carbon nanotubes,” Synth. Met. 103(1-3), 2494–2495 (1999). [CrossRef]
  25. P. Guéret, P. Buchmann, K. Daetwyler, and P. Vettiger, “Resistance of very small area ohmic contacts on GaAs,” Appl. Phys. Lett. 55(17), 1735–1737 (1989). [CrossRef]
  26. H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, R. W. Martin, and S. Tripathy, “Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes,” J. Appl. Phys. 93(10), 5978–5982 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited