OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23258–23270

Wide range operation of regenerative optical parametric wavelength converter using ASE-degraded 43-Gb/s RZ-DPSK signals

Mingyi Gao, Junya Kurumida, and Shu Namiki  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23258-23270 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2788 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For sustainable growth of the Internet, wavelength-tunable optical regeneration is the key to scaling up high energy-efficiency dynamic optical path networks while keeping the flexibility of the network. Wavelength-tunable optical parametric regenerator (T-OPR) based on the gain saturation effect of parametric amplification in a highly nonlinear fiber is promising for noise reduction in phase-shift keying signals. In this paper, we experimentally evaluated the T-OPR performance for ASE-degraded 43-Gb/s RZ-DPSK signals over a 20-nm input wavelength range between 1527 nm and 1547 nm. As a result, we achieved improved power penalty performance for the regenerated idler with a proper pump power range.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(190.4975) Nonlinear optics : Parametric processes
(200.6015) Optics in computing : Signal regeneration

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 3, 2011
Revised Manuscript: September 30, 2011
Manuscript Accepted: September 30, 2011
Published: November 1, 2011

Mingyi Gao, Junya Kurumida, and Shu Namiki, "Wide range operation of regenerative optical parametric wavelength converter using ASE-degraded 43-Gb/s RZ-DPSK signals," Opt. Express 19, 23258-23270 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, K. Oyamada, and K. Oyamada, “Ultrahigh-definition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011). [CrossRef]
  2. S. Namiki, T. Hasama, and H. Ishikawa, “Optical signal processing for energy-efficient dynamic optical path network,” in Proc. Eur. Conf. Optical Communication (ECOC 2010), Paper Mo.2.A.4, 2010.
  3. J. Berthold, A. A. M. Saleh, L. Blair, and J. M. Simmons, “Optical networking: past, present, and future,” J. Lightwave Technol. 26(9), 1104–1118 (2008). [CrossRef]
  4. M. Gao, J. Kurumida, and S. Namiki, “Wavelength-tunable optical parametric regenerator,” Opt. Lett. 35(20), 3468–3470 (2010). [CrossRef] [PubMed]
  5. M. Gao, J. Kurumida, and S. Namiki, “43-Gbit/s operation of wavelength-tunable optical parametric regenerator,” IEEE Photon. Technol. Lett. 23(11), 718–720 (2011). [CrossRef]
  6. M. Gao, J. Kurumida, and S. Namiki, “Cascaded optical parametric amplitude thresholder and limiter,” in Proc. Opto-Electronics and Communications Conference (OECC 2011), Paper 7C4_4, 2011.
  7. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990). [CrossRef] [PubMed]
  8. M. Matsumoto and K. Sanuki, “Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter,” Opt. Express 15(13), 8094–8103 (2007), http://www.opticsinfobase.org/oe /abstract.cfm?uri=oe-15–13–8094 . [CrossRef] [PubMed]
  9. M. Sköld, J. Yang, H. Sunnerud, M. Karlsson, S. Oda, and P. A. Andrekson, “Constellation diagram analysis of DPSK signal regeneration in a saturated parametric amplifier,” Opt. Express 16(9), 5974–5982 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-5974 . [CrossRef] [PubMed]
  10. C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009). [CrossRef]
  11. Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22(12), 887–889 (2010). [CrossRef]
  12. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002). [CrossRef]
  13. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2(1-2), 83–99 (2008). [CrossRef]
  14. M. Takahashi, M. Tadakuma, J. Hiroishi, and T. Yagi, “5.7dB SBS suppression with a HNLF (module) comprised of 3 HNLFs having different GeO2 concentration,” in Proc. Eur. Conf. Optical Communication (ECOC 2007), Paper P014, 2007.
  15. M. Matsumoto, “Phase noise generation in an amplitude limiter using saturation of a fiber-optic parametric amplifier,” Opt. Lett. 33(15), 1638–1640 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited