OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23279–23285

Continuous metal plasmonic frequency selective surfaces

Jianfa Zhang, Jun-Yu Ou, Nikitas Papasimakis, Yifang Chen, Kevin F. MacDonald, and Nikolay I. Zheludev  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23279-23285 (2011)
http://dx.doi.org/10.1364/OE.19.023279


View Full Text Article

Enhanced HTML    Acrobat PDF (1128 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the microwave part of the spectrum, where losses are minimal, metal films regularly patterned (perforated) on the sub-wavelength scale achieve spectral selectivity by balancing the transmission and reflection characteristics of the surface. Here we show for optical frequencies, where joule losses are important, that periodic structuring of a metal film without violation of continuity (i.e. without perforation) is sufficient to achieve substantial modification of reflectivity. By engineering the geometry of the structure imposed on a surface one can dramatically change the perceived color of the metal without employing any form of chemical modification, thin-film coating or diffraction effects. This novel frequency selective effect is underpinned by plasmonic Joule losses in the constituent elements of the patterns (dubbed ‘intaglio’ and ‘bas relief’ metamaterials to distinguish indented and raised structures respectively) and is specific to the optical part of the spectrum. It has the advantage of maintaining the integrity of metal surfaces and is well suited to high-throughput fabrication via techniques such as nano-imprint.

© 2011 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 4, 2011
Revised Manuscript: September 18, 2011
Manuscript Accepted: September 19, 2011
Published: November 1, 2011

Citation
Jianfa Zhang, Jun-Yu Ou, Nikitas Papasimakis, Yifang Chen, Kevin F. MacDonald, and Nikolay I. Zheludev, "Continuous metal plasmonic frequency selective surfaces," Opt. Express 19, 23279-23285 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23279


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Vardaxoglou, Frequency Selective Surfaces: Analysis and Design (John Wiley & Sons, Taunton, 1997).
  2. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010). [CrossRef] [PubMed]
  3. A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt.2(6), R15–R28 (2000). [CrossRef]
  4. A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol.2(6), 347–353 (2007). [CrossRef] [PubMed]
  5. M. Kolle, P. M. Salgard-Cunha, M. R. J. Scherer, F. Huang, P. Vukusic, S. Mahajan, J. J. Baumberg, and U. Steiner, “Mimicking the colourful wing scale structure of the Papilio blumei butterfly,” Nat. Nanotechnol.5(7), 511–515 (2010). [CrossRef] [PubMed]
  6. J. Huang, X. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett.6(10), 2325–2331 (2006). [CrossRef] [PubMed]
  7. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, 1984).
  8. B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  9. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  10. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  11. S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999). [CrossRef]
  12. A. W. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(22), 3771–3782 (2007). [CrossRef]
  13. E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal Decomposition of Surface-Plasmon Whispering Gallery Resonators,” Nano Lett.9(9), 3147–3150 (2009). [CrossRef] [PubMed]
  14. J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl.3(3), 125–128 (1978). [CrossRef]
  15. G. Wyszecki and W. S. Stiles, Color Science: concepts and methods, quantitative data and formulae (Wiley, New York, 1982).
  16. “Colour & Vision Research Laboratory Database,” (University College London), http://www.cvrl.org .
  17. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010). [CrossRef] [PubMed]
  18. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and its Application as Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  19. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008). [CrossRef]
  20. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited