OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23298–23314

Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging

Shuai Yuan and Chrysanthe Preza  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23298-23314 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (5157 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wavefront encoding (WFE) with different cubic phase mask designs was investigated in engineering 3D point-spread functions (PSF) to reduce their sensitivity to depth-induced spherical aberration (SA) which affects computational complexity in 3D microscopy imaging. The sensitivity of WFE-PSFs to defocus and to SA was evaluated as a function of phase mask parameters using mean-square-error metrics to facilitate the selection of mask designs for extended-depth-of-field (EDOF) microscopy and for computational optical sectioning microscopy (COSM). Further studies on pupil phase contribution and simulated WFE-microscope images evaluated the engineered PSFs and demonstrated SA insensitivity over sample depths of 30 μm. Despite its low sensitivity to SA, the successful WFE design for COSM maintains a high sensitivity to defocus as it is desired for optical sectioning.

© 2011 OSA

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(350.4600) Other areas of optics : Optical engineering
(110.7348) Imaging systems : Wavefront encoding

ToC Category:

Original Manuscript: August 15, 2011
Revised Manuscript: October 4, 2011
Manuscript Accepted: October 13, 2011
Published: November 1, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Shuai Yuan and Chrysanthe Preza, "Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging," Opt. Express 19, 23298-23314 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34(11), 1859–1866 (1995). [CrossRef] [PubMed]
  2. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16(26), 22048–22057 (2008). [CrossRef] [PubMed]
  3. S. C. Tucker and W. T. Cathey, andE. Dowski., “Extended depth of field and aberration control for inexpensive digital microscope systems,” Opt. Express 4(11), 467–474 (1999). [CrossRef] [PubMed]
  4. M. R. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, “Wavefront coding fluorescence microscopy using high aperture lenses,” in Optical imaging and microscopy: techniques and advanced systems, P. Török and F.-J. Kao, eds. (Springer-Verlag, Berlin, 2003), pp. 143–165.
  5. P. M. Carlton, J. Boulanger, C. Kervrann, J.-B. Sibarita, J. Salamero, S. Gordon-Messer, D. Bressan, J. E. Haber, S. Haase, L. Shao, L. Winoto, A. Matsuda, P. Kner, S. Uzawa, M. Gustafsson, Z. Kam, D. A. Agard, and J. W. Sedat, “Fast live simultaneous multiwavelength four-dimensional optical microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16016–16022 (2010). [CrossRef] [PubMed]
  6. J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999). [CrossRef] [PubMed]
  7. J.-B. Sibarita, “Deconvolution Microscopy,” in Microscopy Techniques, J. Rietdorf, ed. (Springer Berlin / Heidelberg, 2005), pp. 1288–1291.
  8. D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng. 13(1), 191–219 (1984). [CrossRef] [PubMed]
  9. J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005). [CrossRef] [PubMed]
  10. C. Preza and J. A. Conchello, “Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy,” J. Opt. Soc. Am. A 21, 1593–1601 (2004).
  11. Z. Kam, P. Kner, D. A. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc. 226(1), 33–42 (2007). [CrossRef] [PubMed]
  12. S. Yuan and C. Preza, “3D fluorescence microscopy imaging accounting for depth-varying point-spread functions predicted by a strata interpolation method and a principal component analysis method,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVIII, (SPIE, 2011), 79040M.
  13. S. F. Gibson and F. Lanni, “Experimental Test of an analytical Model of Aberration in an Oil-Immersion Objective Lens Used in 3-dimensional Light Microscopy,” J. Opt. Soc. Am. A 9(1), 154–166 (1992). [CrossRef] [PubMed]
  14. P. Török, P. Varga, and G. Nemeth, “Analytical solution of the diffection integrals and interpretation of wave-front distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12(12), 2660–2671 (1995). [CrossRef]
  15. J. G. McNally, C. Preza, J.-A. Conchello, and L. J. Thomas., “Artifacts in computational optical-sectioning microscopy,” J. Opt. Soc. Am. A 11(3), 1056–1067 (1994). [CrossRef] [PubMed]
  16. J. W. Shaevitz and D. A. Fletcher, “Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function,” J. Opt. Soc. Am. A 24(9), 2622–2627 (2007). [CrossRef] [PubMed]
  17. C. Preza and V. Myneni, “Quantitative depth-variant imaging for fluorescence microscopy using the COSMOS software package,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing Xvii, SPIE 7570 (SPIE, 2010), 757003.
  18. C. Preza and J.-A. Conchello, “Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy,” J. Opt. Soc. Am. A 21(9), 1593–1601 (2004). [CrossRef] [PubMed]
  19. G. Saavedra, I. Escobar, R. Martinez-Cuenca, E. Sanchez-Ortiga, and M. Martínez-Corral, “Reduction of spherical-aberration impact in microscopy by wavefront coding,” Opt. Express 17(16), 13810–13818 (2009). [CrossRef] [PubMed]
  20. S. Mezouari and A. R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Opt. Lett. 28(10), 771–773 (2003). [CrossRef] [PubMed]
  21. M. R. Arnison, “Phase control and measurement in digital microscopy,” Ph.D. dissertation (University of Sydney, Sydney, 2004).
  22. H. Zhao, Y. C. Li, H. J. Feng, Z. H. Xu, and Q. Li, “Cubic sinusoidal phase mask: Another choice to extend the depth of field of incoherent imaging system,” Opt. Laser Technol. 42(4), 561–569 (2010). [CrossRef]
  23. G. Carles, A. Carnicer, and S. Bosch, “Phase mask selection in wavefront coding systems: A design approach,” Opt. Lasers Eng. 48(7-8), 779–785 (2010). [CrossRef]
  24. S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14(2), 67–74 (2004). [CrossRef]
  25. S. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43(13), 2709–2721 (2004). [CrossRef] [PubMed]
  26. S. Ghosh, G. Grover, R. Piestun, and C. Preza, “Effect of double-helix point-spread functions on 3D imaging in the presence of sphereical aberrations,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVIII, Proceedings of SPIE, (SPIE, 2011), 790447.
  27. O. Haeberlé, “Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: Conventional microscopy,” Opt. Commun. 216(1-3), 55–63 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited