OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23327–23340

Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays

Vikram Chaudhery, Cheng-Sheng Huang, Anusha Pokhriyal, James Polans, and Brian T. Cunningham  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23327-23340 (2011)
http://dx.doi.org/10.1364/OE.19.023327


View Full Text Article

Enhanced HTML    Acrobat PDF (5763 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By combining photonic crystal label-free biosensor imaging with photonic crystal enhanced fluorescence, it is possible to selectively enhance the fluorescence emission from regions of the PC surface based upon the density of immobilized capture molecules. A label-free image of the capture molecules enables determination of optimal coupling conditions of the laser used for fluorescence imaging of the photonic crystal surface on a pixel-by-pixel basis, allowing maximization of fluorescence enhancement factor from regions incorporating a biomolecule capture spot and minimization of background autofluorescence from areas between capture spots. This capability significantly improves the contrast of enhanced fluorescent images, and when applied to an antibody protein microarray, provides a substantial advantage over conventional fluorescence microscopy. Using the new approach, we demonstrate detection limits as low as 0.97 pg/ml for a representative protein biomarker in buffer.

© 2011 OSA

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 14, 2011
Revised Manuscript: October 14, 2011
Manuscript Accepted: October 16, 2011
Published: November 1, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Vikram Chaudhery, Cheng-Sheng Huang, Anusha Pokhriyal, James Polans, and Brian T. Cunningham, "Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays," Opt. Express 19, 23327-23340 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23327


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Schena and R. W. Davis, “Genes, Genomes, and chips,” in DNA Microarrays: A Practical Approach, M. Schena, ed. (Oxford Press, New York, 1999).
  2. R. Beneke, “Microarray detection with laser scanning device,” in Advanced Methods: DNA Microarrays, U. A. Nuber, ed. (Taylor & Francis Group, New York, 2005).
  3. C. R. Sabanayagam and J. R. Lakowicz, “Increasing the sensitivity of DNA microarrays by metal-enhanced fluorescence using surface-bound silver nanoparticles,” Nucleic Acids Res.35(2), e13 (2006). [CrossRef] [PubMed]
  4. R. A. Irizarry, D. Warren, F. Spencer, I. F. Kim, S. Biswal, B. C. Frank, E. Gabrielson, J. G. Garcia, J. Geoghegan, G. Germino, C. Griffin, S. C. Hilmer, E. Hoffman, A. E. Jedlicka, E. Kawasaki, F. Martínez-Murillo, L. Morsberger, H. Lee, D. Petersen, J. Quackenbush, A. Scott, M. Wilson, Y. Yang, S. Q. Ye, and W. Yu, “Multiple-laboratory comparison of microarray platforms,” Nat. Methods2(5), 345–350 (2005). [CrossRef] [PubMed]
  5. Y. Fu and J. R. Lakowicz, “Enhanced fluorescence of Cy5-labeled DNA tethered to silver island films: fluorescence images and time-resolved studies using single-molecule spectroscopy,” Anal. Chem.78(17), 6238–6245 (2006). [CrossRef] [PubMed]
  6. R. C. Zangar, S. M. Varnum, and N. Bollinger, “Studying cellular processes and detecting disease with protein microarrays,” Drug Metab. Rev.37(3), 473–487 (2005). [CrossRef] [PubMed]
  7. R. C. Zangar, D. S. Daly, and A. M. White, “ELISA microarray technology as a high-throughput system for cancer biomarker validation,” Expert Rev. Proteomics3(1), 37–44 (2006). [CrossRef] [PubMed]
  8. S. F. Kingsmore, “Multiplexed protein measurement: technologies and applications of protein and antibody arrays,” Nat. Rev. Drug Discov.5(4), 310–321 (2006). [CrossRef] [PubMed]
  9. G. MacBeath and S. L. Schreiber, “Printing proteins as microarrays for high-throughput function determination,” Science289(5485), 1760–1763 (2000). [PubMed]
  10. H. Jin and R. C. Zangar, “Protein modifications as potential biomarkers in breast cancer,” Biomark. Insights4, 191–200 (2009). [PubMed]
  11. Y. Arima, Y. Teramura, H. Takiguchi, K. Kawano, H. Kotera, and H. Iwata, “Surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopy for sensitive detection of tumor markers,” Methods Mol. Biol.503, 3–20 (2009). [CrossRef] [PubMed]
  12. T. Shtoyko, E. G. Matveeva, I.-F. Chang, Z. Gryczynski, E. Goldys, and I. Gryczynski, “Enhanced fluorescent immunoassays on silver fractal-like structures,” Anal. Chem.80(6), 1962–1966 (2008). [CrossRef] [PubMed]
  13. C. D. Geddes, A. Parfenov, D. Roll, M. J. Uddin, and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc.13(6), 453–457 (2003). [CrossRef] [PubMed]
  14. Y. Fu and J. R. Lakowicz, “Enhanced fluorescence of Cy5-labeled DNA tethered to silver island films: fluorescence images and time-resolved studies using single-molecule spectroscopy,” Anal. Chem.78(17), 6238–6245 (2006). [CrossRef] [PubMed]
  15. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem.337(2), 171–194 (2005). [CrossRef] [PubMed]
  16. K. Sokolov, G. Chumanov, and T. M. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem.70(18), 3898–3905 (1998). [CrossRef] [PubMed]
  17. J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80(5), 1031–1046 (1993). [CrossRef]
  18. A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010). [CrossRef] [PubMed]
  19. H. Y. Wu, W. Zhang, P. C. Mathias, and B. T. Cunningham, “Magnification of photonic crystal fluorescence enhancement via TM resonance excitation and TE resonance extraction on a dielectric nanorod surface,” Nanotechnology21(12), 125–203 (2010). [CrossRef] [PubMed]
  20. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007). [CrossRef] [PubMed]
  21. N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surfaces,” J. Appl. Phys.103(8), 083104 (2008). [CrossRef]
  22. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem.120(1), 187–193 (2006). [CrossRef]
  23. N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett.88(7), 071110–071113 (2006). [CrossRef]
  24. I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-Area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng.84(4), 603–608 (2007). [CrossRef]
  25. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett.67(21), 3114–3116 (1995). [CrossRef]
  26. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science272(5258), 85–87 (1996). [CrossRef]
  27. P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances to improve fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009). [CrossRef] [PubMed]
  28. I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express17(15), 13222–13235 (2009). [CrossRef] [PubMed]
  29. V. Chaudhery, M. Lu, C. S. Huang, S. George, and B. T. Cunningham, “Photobleaching on photonic crystal enhanced fluorescence surfaces,” J. Fluoresc.21(2), 707–714 (2011). [CrossRef] [PubMed]
  30. P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem.82(16), 6854–6861 (2010). [CrossRef] [PubMed]
  31. P. C. Mathias, N. Ganesh, and B. T. Cunningham, “Application of photonic crystal enhanced fluorescence to a cytokine immunoassay,” Anal. Chem.80(23), 9013–9020 (2008). [CrossRef] [PubMed]
  32. C.-S. Huang, S. George, M. Lu, V. Chaudhery, R. Tan, R. C. Zangar, and B. T. Cunningham, “Application of photonic crystal enhanced fluorescence to cancer biomarker microarrays,” Anal. Chem.83(4), 1425–1430 (2011). [CrossRef] [PubMed]
  33. B. T. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002). [CrossRef]
  34. B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004). [CrossRef] [PubMed]
  35. W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators B Chem.71(1-2), 42–46 (2000). [CrossRef]
  36. S. George, I. D. Block, S. I. Jones, P. C. Mathias, V. Chaudhery, P. Vuttipittayamongkol, H. Y. Wu, L. O. Vodkin, and B. T. Cunningham, “Label-free prehybridization DNA microarray imaging using photonic crystals for quantitative spot quality analysis,” Anal. Chem.82(20), 8551–8557 (2010). [CrossRef] [PubMed]
  37. V. Chaudhery, M. Lu, A. Pokhriyal, S. C. Schulz, and B. T. Cunningham, “Angle-scanning photonic crystal enhanced fluorescence microscopy,” IEEE Sens. J. (Accepted).
  38. R. Zangar, R. Woodbury, and S. Varnum, “Development of a user-friendly microarray ELISA for the analysis of potential protein markers of breast cancer,” FASEB J.17, A986–A986 (2003).
  39. R. L. Woodbury, S. M. Varnum, and R. C. Zangar, “Elevated HGF levels in sera from breast cancer patients detected using a protein microarray ELISA,” J. Proteome Res.1(3), 233–237 (2002). [CrossRef] [PubMed]
  40. S. L. Seurynck-Servoss, C. L. Baird, K. D. Rodland, and R. C. Zangar, “Surface chemistries for antibody microarrays,” Front. Biosci.12(8-12), 3956–3964 (2007). [CrossRef] [PubMed]
  41. R. M. Gonzalez, S. L. Seurynck-Servoss, S. A. Crowley, M. Brown, G. S. Omenn, D. F. Hayes, and R. C. Zangar, “Development and validation of sandwich ELISA microarrays with minimal assay interference,” J. Proteome Res.7(6), 2406–2414 (2008). [CrossRef] [PubMed]
  42. R. C. Zangar, D. S. Daly, A. M. White, S. L. Servoss, R. M. Tan, and J. R. Collett, “ProMAT calibrator: A tool for reducing experimental bias in antibody microarrays,” J. Proteome Res.8(8), 3937–3943 (2009). [CrossRef] [PubMed]
  43. S. M. Varnum, R. L. Woodbury, and R. C. Zangar, “A protein microarray ELISA for screening biological fluids,” Methods Mol. Biol.264, 161–172 (2004). [PubMed]
  44. S. L. Servoss, R. Gonzalez, S. Varnum, and R. C. Zangar, “High-throughput analysis of serum antigens using sandwich ELISAs on microarrays,” Methods Mol. Biol.520, 143–150 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited