OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23377–23385

Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity

Jeremy Upham, Yoshinori Tanaka, Yousuke Kawamoto, Yoshiya Sato, Tatsuya Nakamura, Bong Shik Song, Takashi Asano, and Susumu Noda  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23377-23385 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (816 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We perform time-domain measurements of the interaction between light and silicon photonic crystal nanocavities under dynamic Q factor control. Time-resolved evidence of optical pulse capture and release on demand is demonstrated and compared for samples with dynamic Q ranges from ~3,000 to 26,000 and from 18,500 to 48,000. Observing the energy behaviour in response to dynamic control provides insight not available with time-integrated measurements into factors influencing device performance such as carrier absorption and pulse capture efficiency.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: September 12, 2011
Revised Manuscript: October 8, 2011
Manuscript Accepted: October 12, 2011
Published: November 1, 2011

Jeremy Upham, Yoshinori Tanaka, Yousuke Kawamoto, Yoshiya Sato, Tatsuya Nakamura, Bong Shik Song, Takashi Asano, and Susumu Noda, "Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity," Opt. Express 19, 23377-23385 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007). [CrossRef] [PubMed]
  2. E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003). [CrossRef] [PubMed]
  3. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express 3(6), 062001 (2010). [CrossRef]
  4. C. A. Husko, A. de Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009). [CrossRef]
  5. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009). [CrossRef] [PubMed]
  6. Y. Tanaka, T. Asano, and S. Noda, “Trapping of ultrashort optical pulse into ultra-high-Q photonic nanocavity,” in Proceedings of Pacific Rim Conference on Lasers and Electro-Optics (Tokyo, Japan, 2005), 1024–1025.
  7. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express 16(26), 21721–21730 (2008). [CrossRef] [PubMed]
  8. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  9. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004). [CrossRef] [PubMed]
  10. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005). [CrossRef] [PubMed]
  11. T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Control of emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B. submitted.
  12. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef] [PubMed]
  13. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control.” (to be published).
  14. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  15. C. Manolatou, M. J. Khan, S. Fan, P. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999). [CrossRef]
  16. B. S. Song, T. Asano, Y. Akahane, and S. Noda, “Role of interfaces in heterophotonic crystals for manipulation of photons,” Phys. Rev. B 71(19), 195101 (2005). [CrossRef]
  17. S. Jiang, S. Machida, Y. Takiguchi, H. Cao, and Y. Yamamoto, “Wide band AC balanced homodyne detection of weak coherent pulses,” Opt. Commun. 145(1-6), 91–94 (1998). [CrossRef]
  18. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  19. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005). [CrossRef]
  20. A. W. Elshaari, A. Aboketaf, and S. F. Preble, “Controlled storage of light in silicon cavities,” Opt. Express 18(3), 3014–3022 (2010). [CrossRef] [PubMed]
  21. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  22. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26, 1396–1403 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited