OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23671–23682

Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides

Daoxin Dai, Yaocheng Shi, Sailing He, Lech Wosinski, and Lars Thylen  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 23671-23682 (2011)
http://dx.doi.org/10.1364/OE.19.023671


View Full Text Article

Enhanced HTML    Acrobat PDF (2164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Characteristic analyses are given for a bent silicon hybrid plasmonic waveguide, which has the ability of submicron bending (e.g., R = 500nm) even when operating at the infrared wavelength range (1.2μm~2μm). A silicon hybrid plasmonic submicron-donut resonator is then presented by utilizing the sharp-bending ability of the hybrid plasmonic waveguide. In order to enable long-distance optical interconnects, a pure dielectric access waveguide is introduced for the present hybrid plasmonic submicron-donut resonator by utilizing the evanescent coupling between this pure dielectric waveguide and the submicron hybrid plasmonic resonator. Since the hybrid plasmonic waveguide has a relatively low intrinsic loss, the theoretical intrinsic Q-value is up to 2000 even when the bending radius is reduced to 800nm. By using a three-dimensional finite-difference time-domain (FDTD) method, the spectral response of hybrid plasmonic submicron-donut resonators with a bending radius of 800nm is simulated. The critical coupling of the resonance at around 1423nm is achieved by choosing a 80nm-wide gap between the access waveguide and the resonator. The corresponding loaded Q-value of the submicron-donut resonator is about 220.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: August 19, 2011
Revised Manuscript: October 10, 2011
Manuscript Accepted: October 10, 2011
Published: November 7, 2011

Citation
Daoxin Dai, Yaocheng Shi, Sailing He, Lech Wosinski, and Lars Thylen, "Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides," Opt. Express 19, 23671-23682 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-23671


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett.82(8), 1158–1160 (2003). [CrossRef]
  2. K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express13(1), 256–266 (2005). [CrossRef] [PubMed]
  3. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett.86(21), 211101 (2005). [CrossRef]
  4. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett.30(10), 1186–1188 (2005). [CrossRef] [PubMed]
  5. L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  6. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express14(7), 2932–2937 (2006). [CrossRef] [PubMed]
  7. G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005). [CrossRef]
  8. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett.29(10), 1069–1071 (2004). [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  11. M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett.21(6), 362–364 (2009). [CrossRef]
  12. D. Dai, L. Yang, and S. He, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol.26(6), 704–709 (2008). [CrossRef]
  13. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express18(12), 12971–12979 (2010). [CrossRef] [PubMed]
  14. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  15. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express18(3), 2808–2813 (2010). [CrossRef] [PubMed]
  16. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010). [CrossRef] [PubMed]
  17. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express18(17), 17958–17966 (2010). [CrossRef] [PubMed]
  18. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55μ m,” IEEE J. Quantum Electron.43(6), 479–485 (2007). [CrossRef]
  19. M.-S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express19(9), 8379–8393 (2011). [CrossRef] [PubMed]
  20. G. Zhou, T. Wang, C. Pan, X. Hui, F. Liu, and Y. Su, “Design of plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement,” P1.2, Group Four Photonics 2010 (Beijing).
  21. S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express18(26), 27802–27819 (2010). [CrossRef] [PubMed]
  22. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18(11), 11728–11736 (2010). [CrossRef] [PubMed]
  23. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97(14), 141106 (2010). [CrossRef]
  24. X.-Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X.-J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides,” Opt. Express18(18), 18945–18959 (2010). [CrossRef] [PubMed]
  25. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett.36(12), 2312–2314 (2011). [CrossRef] [PubMed]
  26. Y. Song, J. Wang, M. Yan, and M. Qiu, “Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor,” J. Opt.13(7), 075001 (2011). [CrossRef]
  27. D. Liang, M. Fiorentino, T. Okumura, H.-H. Chang, D. T. Spencer, Y.-H. Kuo, A. W. Fang, D. Dai, R. G. Beausoleil, and J. E. Bowers, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Express17(22), 20355–20364 (2009). [CrossRef] [PubMed]
  28. P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express18(23), 23784–23789 (2010). [CrossRef] [PubMed]
  29. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  30. J. Wang and D. Dai, “Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring,” Opt. Lett.35(24), 4229–4231 (2010). [PubMed]
  31. R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D40(14), R249–R271 (2007). [CrossRef]
  32. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011). [CrossRef] [PubMed]
  33. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express19(13), 12356–12364 (2011). [CrossRef] [PubMed]
  34. A. K. Sharma and B. D. Gupta, “Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor,” Appl. Opt.45(1), 151–161 (2006). [CrossRef] [PubMed]
  35. T. Holstein, “Optical and infrared volume absorptivity of metals,” Phys. Rev.96(2), 535–536 (1954). [CrossRef]
  36. W. E. Lawrence, “Electron-electron scattering in the low temperature resistivity of the noble metals,” Phys. Rev. B13(12), 5316–5319 (1976). [CrossRef]
  37. H. Wei, J. Zhong, L. Liu, X. Zhang, W. Shi, and C. Fang, “Signal bandwidth of general N×N multimode interference couplers,” J. Lightwave Technol.19(5), 739–745 (2001). [CrossRef]
  38. P. B. Johnson and R. W. Christie, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  39. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol.20(11), 1968–1975 (2002). [CrossRef]
  40. Y.-F. Xiao, B.-B. Li, X. Jiang, X. Hu, Y. Li, and Q. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. At. Mol. Opt. Phys.43(3), 035402 (2010). [CrossRef]
  41. areP. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997). [CrossRef]
  42. X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett.36(6), 882–884 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited