OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24030–24036

Analysis of dispersion-enhanced phase noise in CO-OFDM systems with RF-pilot phase compensation

Qunbi Zhuge, Mohamed Morsy-Osman, and David V. Plant  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24030-24036 (2011)
http://dx.doi.org/10.1364/OE.19.024030


View Full Text Article

Enhanced HTML    Acrobat PDF (982 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that dispersion-enhanced phase noise (DEPN) induces performance degradations in both conventional CO-OFDM systems and reduced-guard-interval (RGI) CO-OFDM systems employing RF-pilot phase compensation. After analytically studying DEPN, we show that DEPN causes a 2 to 6 dB optical signal-to-noise ratio (OSNR) penalty at transmission distances of 3200 km and 1600 km for 28 and 56 Gbaud QPSK systems, respectively, using lasers with 2 MHz linewidths. At such distances, DEPN reduces the linewidth tolerance at 1 dB OSNR penalty to 250-500 kHz while in the back-to-back case the tolerance is 1-3 MHz for both systems. When fiber nonlinearity is included, we observe similar performance degradations.

© 2011 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 25, 2011
Revised Manuscript: October 21, 2011
Manuscript Accepted: October 24, 2011
Published: November 10, 2011

Citation
Qunbi Zhuge, Mohamed Morsy-Osman, and David V. Plant, "Analysis of dispersion-enhanced phase noise in CO-OFDM systems with RF-pilot phase compensation," Opt. Express 19, 24030-24036 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24030


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?[Invited],” J. Opt. Netw.7(3), 234–255 (2008). [CrossRef]
  2. Q. Yang, Y. Tang, Y. Ma, and W. Shieh, “Experimental demonstration and numerical simulation of 107-Gb/s high spectral efficiency coherent optical OFDM,” J. Lightwave Technol.27(3), 168–176 (2009). [CrossRef]
  3. S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol.27(3), 177–188 (2009). [CrossRef]
  4. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol.29(4), 483–490 (2011). [CrossRef]
  5. X. Liu, S. Chandrasekhar, P. J. Winzer, S. Draving, J. Evangelista, N. Hoffman, B. Zhu, and D. W. Peckham, “Single coherent detection of a 606-Gb/s CO-OFDM signal with 32-QAM subcarrier modulation using 4x 80-Gsamples/s ADCs,” in Proc. ECOC’10, Paper PD2.6 (2010).
  6. A. Barbieri, G. Colavolpe, T. Foggi, E. Forestieri, and G. Prati, “OFDM versus single-carrier transmission for 100 Gbps optical communication,” J. Lightwave Technol.28(17), 2537–2551 (2010). [CrossRef]
  7. S. L. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008). [CrossRef]
  8. S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett.22(17), 1288–1290 (2010). [CrossRef]
  9. S. L. Jansen, A. Lobato, S. Adhikari, B. Inan, and D. van den Borne, “Optical OFDM for ultra-high capacity long-haul transmission applications,” in Proc. ONDM’11, pp. 1–4 (2011).
  10. Q. Zhuge, C. Chen, and D. V. Plant, “Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission,” Opt. Express19(5), 4472–4484 (2011). [CrossRef] [PubMed]
  11. W. Shieh and K.-P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express16(20), 15718–15727 (2008). [CrossRef] [PubMed]
  12. F. Buchali, R. Dischler, M. Mayrock, X. Xiao, and Y. Tang, “Improved frequency offset correction in coherent optical OFDM systems,” in Proc. ECOC’08, Paper Mo.4.D.4 (2008).
  13. B. Inan, S. Randel, S. L. Jansen, A. Lobato, S. Adhikari, and N. Hanik, “Pilot-tone-based nonlinearity compensation for optical OFDM systems,” in Proc. ECOC’10, Paper Tu.4.A.6 (2010).
  14. A. Lobato, B. Inan, S. Adhikari, and S. L. Jansen, “On the efficiency of RF-Pilot-based nonlinearity compensation for CO-OFDM,” in Proc. OFC’11, Paper OThF2 (2011).
  15. M. H. Morsy-Osman, L. R. Chen, and D. V. Plant, “Joint mitigation of laser phase noise and fiber nonlinearity using pilot-aided transmission for single-carrier systems,” in Proc. ECOC’11, Paper Tu.3.A.3 (2011).
  16. Q. Zhuge and D. V. Plant, “Compensation for dispersion-enhanced phase noise in reduced-guard-interval CO-OFDM transmissions,” in Proc. SPPCom’11, Paper SPTuC4 (2011).
  17. S. Wu and Y. Bar-Ness, “OFDM systems in the presence of phase noise: consequences and solutions,” IEEE Trans. Commun.52(11), 1988–1996 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited