OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24122–24128

Three dimensional laser microfabrication in diamond using a dual adaptive optics system

Richard D. Simmonds, Patrick S. Salter, Alexander Jesacher, and Martin J. Booth  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24122-24128 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1463 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Femtosecond laser fabrication of controlled three dimensional structures deep in the bulk of diamond is facilitated by a dual adaptive optics system. A deformable mirror is used in parallel with a liquid crystal spatial light modulator to compensate the extreme aberrations caused by the refractive index mismatch between the diamond and the objective immersion medium. It is shown that aberration compensation is essential for the generation of controlled micron-scale features at depths greater than 200 μm, and the dual adaptive optics approach demonstrates increased fabrication efficiency relative to experiments using a single adaptive element.

© 2011 OSA

OCIS Codes
(090.1000) Holography : Aberration compensation
(140.3390) Lasers and laser optics : Laser materials processing
(220.1920) Optical design and fabrication : Diamond machining
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Laser Microfabrication

Original Manuscript: September 22, 2011
Revised Manuscript: October 17, 2011
Manuscript Accepted: October 17, 2011
Published: November 10, 2011

Richard D. Simmonds, Patrick S. Salter, Alexander Jesacher, and Martin J. Booth, "Three dimensional laser microfabrication in diamond using a dual adaptive optics system," Opt. Express 19, 24122-24128 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011). [CrossRef]
  2. J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond,” J. Phys.: Condens. Matter 18, S807–S824 (2006). [CrossRef]
  3. R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009). [CrossRef] [PubMed]
  4. B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultrathin single-crystal diamond membranes,” Adv. Mater. 20, 4793–4798 (2008). [CrossRef]
  5. T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by ir femtosecond laser pulses,” Appl. Phys. A 90, 645–651 (2008). [CrossRef]
  6. O. H. Y. Zalloum, M. Parrish, A. Terekhov, and W. Hofmeister, “On femtosecond micromachining of HPHT single-crystal diamond with direct laser writing using tight focusing,” Opt. Express 18(12), 13122–13135 (2010). [CrossRef] [PubMed]
  7. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998). [CrossRef]
  8. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010). [CrossRef] [PubMed]
  9. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000). [CrossRef]
  10. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000). [CrossRef] [PubMed]
  11. D. Oron and Y. Silberberg, “Spatiotemporal coherent control using shaped, temporally focused pulses,” Opt. Express 13(24), 9903–9908 (2005). [CrossRef] [PubMed]
  12. C. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010). [CrossRef] [PubMed]
  13. M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006). [CrossRef]
  14. R. R. Thomson, A. S. Bockelt, E. Ramsay, S. Beecher, A. H. Greenaway, A. K. Kar, and D. T. Reid, “Shaping ultrafast laser inscribed optical waveguides using a deformable mirror,” Opt. Express 16(17), 12786–12793 (2008). [PubMed]
  15. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008). [CrossRef] [PubMed]
  16. N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, “100-khz diffraction-limited femtosecond laser micromachining,” Appl. Phys. B 80, 27–30 (2005). [CrossRef]
  17. M. Shaw, S. Hall, S. Knox, R. Stevens, and C. Paterson, “Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy,” Opt. Express 18(7), 6900–6913 (2010). [CrossRef] [PubMed]
  18. S. Hu, B. Xu, X. Zhang, J. Hou, J. Wu, and W. Jian, “Double-deformable-mirror adaptive optics system for phase compensation,” Appl. Opt. 45(12), 2638–2642 (2006). [CrossRef] [PubMed]
  19. M. Booth, T. Wilson, H. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirrors,” Appl. Opt. 44(24), 5131–5139 (2005). [CrossRef] [PubMed]
  20. Z. Bor, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14(16), 862–864 (1989). [CrossRef] [PubMed]
  21. K. Mecseki, A. P. Kovcs, and Z. L. Horvth, “Measurement of pulse front distortion caused by aberrations using spectral interferometry,” in AIP Conference Proceedings on Light at Extreme Intensities: LEI 2009, (2010).
  22. E. Rittweger, K. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nature Photon. 3, 144–147 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited