OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24171–24181

Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser

Stephane Schilt, Nikola Bucalovic, Vladimir Dolgovskiy, Christian Schori, Max C. Stumpf, Gianni Di Domenico, Selina Pekarek, Andreas E. H. Oehler, Thomas Südmeyer, Ursula Keller, and Pierre Thomann  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24171-24181 (2011)
http://dx.doi.org/10.1364/OE.19.024171


View Full Text Article

Enhanced HTML    Acrobat PDF (2357 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first full stabilization of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser (DPSSL) operating in the 1.5-μm spectral region. The stability of the comb is characterized in free-running and in phase-locked operation by measuring the noise properties of the carrier-envelope offset (CEO) beat, of the repetition rate, and of a comb line at 1558 nm. The high Q-factor of the semiconductor saturable absorber mirror (SESAM)-modelocked 1.5-µm DPSSL results in a low-noise CEO-beat, for which a tight phase lock can be much more easily realized than for a fiber comb. Using a moderate feedback bandwidth of only 5.5 kHz, we achieved a residual integrated phase noise of 0.72 rad rms for the locked CEO, which is one of the smallest values reported for a frequency comb system operating in this spectral region. The fractional frequency stability of the CEO-beat is 20‑fold better than measured in a standard self-referenced commercial fiber comb system and contributes only 10−15 to the optical carrier frequency instability at 1 s averaging time.

© 2011 OSA

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 19, 2011
Revised Manuscript: October 27, 2011
Manuscript Accepted: October 30, 2011
Published: November 11, 2011

Citation
Stephane Schilt, Nikola Bucalovic, Vladimir Dolgovskiy, Christian Schori, Max C. Stumpf, Gianni Di Domenico, Selina Pekarek, Andreas E. H. Oehler, Thomas Südmeyer, Ursula Keller, and Pierre Thomann, "Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser," Opt. Express 19, 24171-24181 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24171


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys.78(4), 1297–1309 (2006). [CrossRef]
  2. J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron.9(4), 1041–1058 (2003). [CrossRef]
  3. M. C. Stowe, M. J. Thorpe, A. Pe'er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys.55, 1–60 (2008). [CrossRef]
  4. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science311(5767), 1595–1599 (2006). [CrossRef] [PubMed]
  5. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics4(1), 55–57 (2010). [CrossRef]
  6. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics,” Science286(5444), 1507–1512 (1999). [CrossRef] [PubMed]
  7. U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B100(1), 15–28 (2010). [CrossRef]
  8. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003). [CrossRef] [PubMed]
  9. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B69(4), 327–332 (1999). [CrossRef]
  10. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85(11), 2264–2267 (2000). [CrossRef] [PubMed]
  11. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000). [CrossRef] [PubMed]
  12. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett.26(6), 373–375 (2001). [CrossRef] [PubMed]
  13. A. Bartels, D. C. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009). [CrossRef] [PubMed]
  14. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett.29(3), 250–252 (2004). [CrossRef] [PubMed]
  15. G. Marra, R. Slavík, H. S. Margolis, S. N. Lea, P. Petropoulos, D. J. Richardson, and P. Gill, “High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser,” Opt. Lett.36(4), 511–513 (2011). [CrossRef] [PubMed]
  16. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett.31(13), 1997–1999 (2006). [CrossRef] [PubMed]
  17. I. Hartl, G. Imeshev, M. E. Fermann, C. Langrock, and M. M. Fejer, “Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology,” Opt. Express13(17), 6490–6496 (2005). [CrossRef] [PubMed]
  18. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B86(2), 219–227 (2007). [CrossRef]
  19. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express18(2), 1667–1676 (2010). [CrossRef] [PubMed]
  20. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett.34(5), 638–640 (2009). [CrossRef] [PubMed]
  21. F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett.36(16), 3260–3262 (2011). [CrossRef] [PubMed]
  22. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett.17(7), 505–507 (1992). [CrossRef] [PubMed]
  23. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996). [CrossRef]
  24. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics2(10), 599–604 (2008). [CrossRef]
  25. A. E. H. Oehler, M. C. Stumpf, S. Pekarek, T. Südmeyer, K. J. Weingarten, and U. Keller, “Picosecond diode-pumped 1.5 µm Er:Yb:glass lasers operating at 10-100 GHz repetition rate,” Appl. Phys. B99(1-2), 53–62 (2010). [CrossRef]
  26. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002). [CrossRef]
  27. S. Pekarek, C. Fiebig, M. C. Stumpf, A. E. H. Oehler, K. Paschke, G. Erbert, T. Südmeyer, and U. Keller, “Diode-pumped gigahertz femtosecond Yb:KGW laser with a peak power of 3.9 kW,” Opt. Express18(16), 16320–16326 (2010). [CrossRef] [PubMed]
  28. S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett.35(5), 748–750 (2010). [CrossRef] [PubMed]
  29. R. Holzwarth, M. Zimmermann, T. Udem, T. W. Hänsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett.26(17), 1376–1378 (2001). [CrossRef] [PubMed]
  30. S. A. Meyer, J. A. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” Eur. Phys. J. D48(1), 19–26 (2008). [CrossRef]
  31. M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Südmeyer, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B99(3), 401–408 (2010). [CrossRef]
  32. S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express19(17), 16491–16497 (2011). [CrossRef] [PubMed]
  33. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19(9), 8108–8116 (2011). [CrossRef] [PubMed]
  34. V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, “Timing jitter characterization of a free-running SESAM mode-locked VECSEL,” IEEE Photon. J.3(4), 658–664 (2011). [CrossRef]
  35. http://www.time-bandwidth.com/product/view/id/34
  36. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron.2(3), 540–556 (1996). [CrossRef]
  37. A. Schlatter, B. Rudin, S. C. Zeller, R. Paschotta, G. J. Spühler, L. Krainer, N. Haverkamp, H. R. Telle, and U. Keller, “Nearly quantum-noise-limited timing jitter from miniature Er:Yb:glass lasers,” Opt. Lett.30(12), 1536–1538 (2005). [CrossRef] [PubMed]
  38. B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express13(26), 10622–10633 (2005). [CrossRef] [PubMed]
  39. S. Schilt, N. Bucalovic, L. Tombez, C. Schori, V. Dolgovskiy, G. Di Domenico, M. Zaffalon, and P. Thomann, “Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb,” Rev. Sci. Instrum. (submitted to).
  40. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49(25), 4801–4807 (2010). [CrossRef] [PubMed]
  41. T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, “Highly phase stable mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron.9(4), 1002–1010 (2003). [CrossRef]
  42. T. Fuji, J. Rauschenberger, C. Gohle, A. Apolonski, T. Udem, V. S. Yakovlev, G. Tempea, T. W. Hänsch, and F. Krausz, “Attosecond control of optical waveforms,” New J. Phys.7, 116 (2005). [CrossRef]
  43. H. M. Crespo, J. R. Birge, M. Y. Sander, E. L. Falcao-Filho, A. Benedick, and F. X. Kärtner, “Phase stabilization of sub-two-cycle pulses from prismless octave-spanning Ti:sapphire lasers,” J. Opt. Soc. Am. B25(7), B147–B154 (2008). [CrossRef]
  44. T. J. Yu, K.-H. Hong, H.-G. Choi, J. H. Sung, I. W. Choi, D.-K. Ko, J. Lee, J. Kim, D. E. Kim, and C. H. Nam, “Precise and long-term stabilization of the carrier-envelope phase of femtosecond laser pulses using an enhanced direct locking technique,” Opt. Express15(13), 8203–8211 (2007). [CrossRef] [PubMed]
  45. D. C. Heinecke, A. Bartels, and S. A. Diddams, “Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb,” Opt. Express19(19), 18440–18451 (2011). [CrossRef] [PubMed]
  46. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett.30(6), 667–669 (2005). [CrossRef] [PubMed]
  47. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics5(7), 425–429 (2011). [CrossRef]
  48. J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultra-low noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett.94(14), 141105 (2009). [CrossRef]
  49. A. Haboucha, W. Zhang, T. Li, M. Lours, A. N. Luiten, Y. Le Coq, and G. Santarelli, “Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation,” Opt. Lett.36(18), 3654–3656 (2011). [CrossRef] [PubMed]
  50. V. Dolgovskiy, S. Schilt, G. Di Domenico, N. Bucalovic, C. Schori, and P. Thomann, “1.5-μm cavity-stabilized laser for ultra-stable microwave generation,” Proc. IFCS&EFTF Joint Conference, San Francisco, USA, May 2–5, 2011.
  51. H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B74(1), 1–6 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited