OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24241–24251

Towards athermal organic-inorganic guided mode resonance filters

M. R. Saleem, P. Stenberg, T. Alasaarela, P. Silfsten, M. B. Khan, S. Honkanen, and J. Turunen  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24241-24251 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2383 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate guided-mode resonance filters featuring an amorphous TiO2 layer fabricated by atomic layer deposition on a polymeric substrate. The thermal properties of such filters are studied in detail by taking into account both thermal expansion of the structure and thermo-optic coefficients of the materials. We show both theoretically and experimentally that these two effects partially compensate for each other, leading to nearly athermal devices. The wavelength shift of the resonance reflectance peak (< 1 nm) is a small fraction of the peak width (∼ 11 nm) up to temperatures exceeding the room temperature by tens of degrees centigrade.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.4670) Materials : Optical materials
(260.5740) Physical optics : Resonance
(310.3840) Thin films : Materials and process characterization
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: September 7, 2011
Revised Manuscript: October 12, 2011
Manuscript Accepted: October 13, 2011
Published: November 14, 2011

M. R. Saleem, P. Stenberg, T. Alasaarela, P. Silfsten, M. B. Khan, S. Honkanen, and J. Turunen, "Towards athermal organic-inorganic guided mode resonance filters," Opt. Express 19, 24241-24251 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. A. Avrutskii, G. A. Golubenko, V. A. Sychogov, and A. V. Tishchenko, “Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface,” Sov. J. Quantum Electron. 16, 1063–1064 (1985). [CrossRef]
  2. I. Masvev and E. Popov, “Zero-order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985). [CrossRef]
  3. S. S. Wang, R. Magnusson, and J. S. Bagby, “Guided mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. 7, 1470–1474 (1990). [CrossRef]
  4. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992). [CrossRef]
  5. S. S. Wang and R. Magnusson, “Theory and applications of guided mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993). [CrossRef] [PubMed]
  6. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic calorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators 85, 219–226 (2002). [CrossRef]
  7. R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” Appl. Phys. Rev. 97, 121301–121352 (2005). [CrossRef]
  8. T. E. Seidel, “Atomic layer deposition,” in Handbook of Semiconductor Manufacturing Technology, 2nd ed. (CRC Press, Boca Raton, 2008).
  9. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49, 4321–4325 (2010). [CrossRef] [PubMed]
  10. M. Worgull, Hot Embossing. Theory and Technology of Microreplication (Elsevier, Oxford, 2009).
  11. J. F. Shackelford and W. Alexander, Eds., Materials Science and Engineering Handbook, 3rd ed. (CRC Press LLC, Boca Raton, 2001).
  12. G. P. Behrmann and J. P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Opt. 32, 2483–2489 (1993). [CrossRef] [PubMed]
  13. H. S. Nalwa, Ed., Polymer Optical Fibers, Vol I, (Americal Scientific Publishers, Valencia, CA, 2004).
  14. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006). [CrossRef]
  15. J. Paul, Z. Liping, B. Ngoi, and F. Z. Ping, “Bragg grating temperature sensors:modeling the effect of adhesion of polymeric coatings,” Sens. Rev. 24, 364–369 (2004). [CrossRef]
  16. L Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  17. http://refractiveindex.info/?group=PLASTICS&material=PC
  18. J. M. Cariou, J. Dugas, L. Martin, and P. Michel, “Refractive-index variations with temperature of PMMA and polycarbonate,” Appl. Opt. 25, 334–336 (1986). [CrossRef] [PubMed]
  19. S. F. pellicori and H. L. Hettich, “Reversible spectral shift in coatings,” Appl. Opt. 27, 3061–3062 (1988). [CrossRef] [PubMed]
  20. G. Gülşen and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. mat. 18, 373–381 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited