OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24252–24257

Continuous wave waveguide lasers of swift argon ion irradiated Nd:YVO4 waveguides

Yicun Yao, Ningning Dong, Feng Chen, Lilong Pang, Zhiguang Wang, and Qingming Lu  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24252-24257 (2011)
http://dx.doi.org/10.1364/OE.19.024252


View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication of planar waveguide in Nd:YVO4 crystal by using swift Ar8+ ion irradiation. At room temperature continuous wave (cw) laser oscillation at wavelength of ~1067 nm has been realized through the optical pump at 808 nm with a low threshold of 9.3 mW. The slope efficiency of the waveguide laser system is of 8.5%. The optical-to-optical conversion efficiency is 6.6%.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

History
Original Manuscript: August 24, 2011
Revised Manuscript: November 7, 2011
Manuscript Accepted: November 11, 2011
Published: November 14, 2011

Citation
Yicun Yao, Ningning Dong, Feng Chen, Lilong Pang, Zhiguang Wang, and Qingming Lu, "Continuous wave waveguide lasers of swift argon ion irradiated Nd:YVO4 waveguides," Opt. Express 19, 24252-24257 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24252


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer, New York, 1990).
  2. P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun.173(1-6), 315–321 (2000). [CrossRef]
  3. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B67(2), 131–150 (1998). [CrossRef]
  4. E. J. Murphy, Integrated optical circuits and components: Design and applications (Marcel Dekker, New York, 1999).
  5. J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron.13(3), 626–637 (2007). [CrossRef]
  6. Ch. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  7. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008). [CrossRef]
  8. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010). [CrossRef]
  9. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci.33(3-4), 165–182 (2008). [CrossRef]
  10. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater.29(11), 1523–1542 (2007). [CrossRef]
  11. F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.-M. Lu, C. E. Rüter, and D. Kip, “Optical channel waveguides in Nd:YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett.88(7), 071123 (2006). [CrossRef]
  12. M. E. Sánchez-Morales, G. V. Vázquez, P. Moretti, and H. Márquez, “Optical waveguides in Nd:YVO4 crystals by multi-implants with protons and helium ions,” Opt. Mater.29(7), 840–844 (2007). [CrossRef]
  13. X. H. Liu, S. M. Zhang, J. H. Zhao, M. Chen, B. G. Peng, X. F. Qin, and K. M. Wang, “Optical properties of a single mode planar waveguide in Nd:YVO4 fabricated by multienergy He ion implantation,” Appl. Opt.50(21), 3865–3870 (2011). [CrossRef] [PubMed]
  14. A. Benayas, D. Jaque, S. J. Hettrick, J. S. Wilkinson, and D. P. Shepherd, “Investigation of neodymium-diffused yttrium vanadate waveguides by confocal microluminescence,” J. Appl. Phys.103(10), 103104 (2008). [CrossRef]
  15. S. J. Hettrick, J. S. Wilkinson, and D. P. Shepherd, “Neodymium and gadolinium diffusion in yttrium vanadate,” J. Opt. Soc. Am. B19(1), 33 (2002). [CrossRef]
  16. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett.35(7), 916–918 (2010). [CrossRef] [PubMed]
  17. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010). [CrossRef]
  18. M. E. Sánchez-Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B94(2), 215–219 (2009). [CrossRef]
  19. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett.86(18), 183501 (2005). [CrossRef]
  20. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett.32(17), 2587–2589 (2007). [CrossRef] [PubMed]
  21. Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett.35(19), 3276–3278 (2010). [CrossRef] [PubMed]
  22. A. Rivera, M. L. Crespillo, J. Olivares, G. García, and F. Agulló-López, “Effect of defect accumulation on ion-beam damage morphology by electronic excitation in lithium niobate: a MonteCarlo approach,” Nuclear Instrum. Methods Phy. Res. Sect. B Beam Interactions Mater. Atoms268(13), 2249–2256 (2010). [CrossRef]
  23. P. Kumar, S. Moorthy Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys.102(8), 084905 (2007). [CrossRef]
  24. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009). [CrossRef]
  25. Y. Y. Ren, N. N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express19(6), 5522–5527 (2011). [CrossRef] [PubMed]
  26. A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. Stewart Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nuclear Instrum. Methods Phy. Res. Sect. B Beam Interactions Mater. Atoms249(1-2), 177–180 (2006). [CrossRef]
  27. Y. Ren, Y. Jia, F. Chen, Q. Lu, Sh. Akhmadaliev, and S. Zhou, “Second harmonic generation of swift carbon ion irradiated Nd:GdCOB waveguides,” Opt. Express19(13), 12490–12495 (2011). [CrossRef] [PubMed]
  28. J. F. Ziegler, computer code at “SRIM & TRIM,” http://www.srim.org .
  29. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited