OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24286–24297

Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses

Chih Wang, Hsuan-I Wang, Wei-Tsung Tang, Chih-Wei Luo, Takayoshi Kobayashi, and Jihperng Leu  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24286-24297 (2011)
http://dx.doi.org/10.1364/OE.19.024286


View Full Text Article

Enhanced HTML    Acrobat PDF (5146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Large-area surface ripple structures of indium-tin-oxide films, composed of self-organized nanodots, were induced by femtosecond laser pulses, without scanning. The multi-periodic spacing (∼800 nm, ∼400 nm and ∼200 nm) was observed in the laser-induced ripple of ITO films. The local conductivity of ITO films is significantly higher, by approximately 30 times, than that of the as-deposited ITO films, due to the formation of these nanodots. Such a significant change can be ascribed to the formation of indium metal-like clusters, which appear as budges of ∼ 5 nm height, due to an effective volume increase after breaking the In-O to form In-In bonding.

© 2011 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: August 31, 2011
Revised Manuscript: October 23, 2011
Manuscript Accepted: October 24, 2011
Published: November 14, 2011

Citation
Chih Wang, Hsuan-I Wang, Wei-Tsung Tang, Chih-Wei Luo, Takayoshi Kobayashi, and Jihperng Leu, "Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses," Opt. Express 19, 24286-24297 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24286


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Al-Ibrahim, H. K. Roth, and S. Sensfuss, “Efficient large-area polymer solar cells on flexible substrates,” Appl. Phys. Lett.85, 1481–1483 (2004). [CrossRef]
  2. H. Liu and R. Sun, “Laminated active matrix organic light-emitting devices,” Appl. Phys. Lett.92, 063304-1–063304-3 (2008).
  3. H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indiumtinoxide thin films for organic light-emitting devices,” J. Appl. Phys.86, 6451–6461 (1999). [CrossRef]
  4. C. Guillén and J. Herrero, “Structure optical and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen,” J. Appl. Phys.101, 073514-1–073514-7 (2007). [CrossRef]
  5. C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett.70, 1348–1350 (1997). [CrossRef]
  6. J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett.74, 2340–2342 (1999). [CrossRef]
  7. R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett.79, 2925–2927 (2001). [CrossRef]
  8. M. Gross, A. Winnacker, and P. J. Wellmann, “Electrical, optical and morphological properties of nanoparticle indium-tin-oxide layers,” Thin Solid Films515, 8567–8572 (2007). [CrossRef]
  9. H. Hosono, M. Kurita, and H. Kawazoe, “Excimer laser crystallization of amorphous indium-tin-oxide thin films and application to fabrication of bragg gratings,” Thin Solid Films351, 137–140 (1999). [CrossRef]
  10. G. Legeay, X. Castel, R. Benzerga, and J. Pinel, “Excimer laser beam/ITO interaction: from laser processing to surface reaction,” Phys. Stat. Sol. (C)5, 3248–3254 (2008). [CrossRef]
  11. J. G. Lunney, R. R. O’Neill, and K. Schulmeister, “Excimer laser etching of transparent conducting oxides,” Appl. Phys. Lett.59, 647–649 (1991). [CrossRef]
  12. H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structures on solids: a universal phenomenon,” Phys. Rev. Lett.49, 1955–1958 (1982). [CrossRef]
  13. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. experiments on Ge, Si, Al and brass,” Phys. Rev. B27, 1155–1172 (1983). [CrossRef]
  14. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett.74, 2248–2251 (1995). [CrossRef] [PubMed]
  15. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Frster, J. P. Geindre, and P. Audebert, i.e., “Non-thermalmelting in semiconductors measured at femtosecond resolution” Nature410, 65–68 (2001). [CrossRef] [PubMed]
  16. J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization,” Appl. Phy. Lett.85, 1232–1234 (2004). [CrossRef]
  17. C. W. Cheng, W. C. Shen, C. Y. Lin, Y. J. Lee, and J. S. Chen, “Fabrication of micro/nano crystalline ITO structures by femtosecond laser pulses,” Appl. Phys. A101, 243–248 (2010). [CrossRef]
  18. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3, 4062–4070 (2009). [CrossRef] [PubMed]
  19. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett.32, 1932–1935 (2007). [CrossRef] [PubMed]
  20. X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett.35, 1248–1250 (2010). [CrossRef] [PubMed]
  21. G. Zhou, P. M. Fauchet, and A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B26, 5366–5381 (1982). [CrossRef]
  22. C. W. Luo, C. C. Lee, C. H. Li, H. C. Shih, Y.-J. Chen, C. C. Hsieh, C. H. Su, W. Y. Tzeng, K. H. Wu, and J. Y. Juang, i.e. “Ordered YBCO sub-micron array structures induced by pulsed femtosecond laser irradiation,” Opt. Express16, 20610–20616 (2008). [CrossRef] [PubMed]
  23. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82, 4462–4464 (2003). [CrossRef]
  24. R. L. Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett.36, 229–231 (2011). [CrossRef] [PubMed]
  25. J. A. Chaney and P. E. Pehrsson, “Work function changes and surface chemistry of oxygen, hydrogen, and carbon on indium tin oxide,” Appl. Surf. Sci.180, 214–226 (2001). [CrossRef]
  26. D. Briggs and M. P. Seah, in Practical surface analysis, (John Wiley and Sons, New York, 1993).
  27. F. Zhu, C. H. A. Huan, K. Zhang, and A. T. S. Wee, “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy,” Thin Solid Films359, 244–250 (2000). [CrossRef]
  28. M. Mizuhashi, “Electrical properties of vacuum-deposited indium oxide and indium tin oxide films,” Thin Solid Films70, 91–100 (1980). [CrossRef]
  29. S. Noguchi and H. Sakata, “Electrical properties of undoped In2O3 films prepared by reactive evaporation,” J. Phys. D: Appl. Phys.13, 1129–1134 (1980). [CrossRef]
  30. C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of indium-tin oxide interfaces using x-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir18, 450–457 (2002). [CrossRef]
  31. T. Szörényi, L. D. Laude, I. Bertóti, Z. Kntor, and Zs Geretovszky, “Excimer laser processing of indiumtinoxide films: an optical investigation,” J. Appl. Phys.78, 6211–6219 (1995). [CrossRef]
  32. D. R. Lide, in CRC Handbook of Chemistry and Physics, (Taylor and Francis, Boca Raton, Florida, 2003–2004).
  33. J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys.48, 3524–3531 (1977). [CrossRef]
  34. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91, 247405-1–247405-8 (2003). [CrossRef]
  35. K. Loeschner, G. Seifert, and A. Heilmann, “Gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys.108, 073114–073123 (2010). [CrossRef]
  36. I. Tanaka, M. Mizuno, and H. Adachi, “Electronic structure of indium oxide using cluster calculations,” Phys. Rev. B56, 3536–3539 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited