OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24387–24395

Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator

William C. Swann, Esther Baumann, Fabrizio R. Giorgetta, and Nathan R. Newbury  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24387-24395 (2011)
http://dx.doi.org/10.1364/OE.19.024387


View Full Text Article

Enhanced HTML    Acrobat PDF (2367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low phase-noise microwave generation has previously been demonstrated using self-referenced frequency combs to divide down a low noise optical reference. We demonstrate an approach based on a fs Er-fiber laser that avoids the complexity of self-referenced stabilization of the offset frequency. Instead, the repetition rate of the femtosecond Er-fiber laser is phase locked to two cavity-stabilized cw fiber lasers that span 3.74 THz by use of an intracavity electro-optic modulator with over 2 MHz feedback bandwidth. The fs fiber laser effectively divides the 3.74 THz difference signal to produce microwave signals at harmonics of the repetition rate. Through comparison of two identical dividers, we measure a residual phase noise on a 1.5 GHz carrier of −120 dBc/Hz at 1 Hz offset.

© 2011 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(350.4010) Other areas of optics : Microwaves

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 21, 2011
Revised Manuscript: October 28, 2011
Manuscript Accepted: October 28, 2011
Published: November 14, 2011

Citation
William C. Swann, Esther Baumann, Fabrizio R. Giorgetta, and Nathan R. Newbury, "Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator," Opt. Express 19, 24387-24395 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24387


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Grop, P. Y. Bourgeois, R. Boudot, Y. Kersale, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett.46(6), 420–422 (2010). [CrossRef]
  2. C. R. Locke, E. N. Ivanov, J. G. Hartnett, P. L. Stanwix, and M. E. Tobar, “Invited article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators,” Rev. Sci. Instrum.79(5), 051301-1–0513011-2 (2008).
  3. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics5(7), 425–429 (2011). [CrossRef]
  4. J. McFerran, E. Ivanov, A. Bartels, G. Wilpers, C. Oates, S. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett.41(11), 650–651 (2005). [CrossRef]
  5. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett.30(6), 667–669 (2005). [CrossRef] [PubMed]
  6. J. Kim, F. X. Kärtner, and M. H. Perrott, “Femtosecond synchronization of radio frequency signals with optical pulse trains,” Opt. Lett.29(17), 2076–2078 (2004). [CrossRef] [PubMed]
  7. J. Millo, R. Boudot, M. Lours, P. Y. Bourgeois, A. N. Luiten, Y. L. Coq, Y. Kersalé, and G. Santarelli, “Ultra-low-noise microwave extraction from fiber-based optical frequency comb,” Opt. Lett.34(23), 3707–3709 (2009). [CrossRef] [PubMed]
  8. S. Xiao, L. Hollberg, N. R. Newbury, and S. A. Diddams, “Toward a low-jitter 10 GHz pulsed source with an optical frequency comb generator,” Opt. Express16(12), 8498–8508 (2008). [CrossRef] [PubMed]
  9. J. Millo, M. Abgrall, M. Lours, E. English, H. Jiang, J. Guena, A. Clairon, M. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett.94(14), 141105 (2009). [CrossRef]
  10. W. Zhang, Z. Xu, M. Lours, R. Boudot, Y. Kersale, G. Santarelli, and Y. Le Coq, “Sub-100 attoseconds stability optics-to-microwave synchronization,” Appl. Phys. Lett.96(21), 211105 (2010). [CrossRef]
  11. F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett.36(16), 3260–3262 (2011). [CrossRef] [PubMed]
  12. W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, and Y. Le Coq, “Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation,” Appl. Phys. B, online first (2011).
  13. A. Haboucha, W. Zhang, T. Li, M. Lours, A. N. Luiten, Y. Le Coq, and G. Santarelli, “An optical fibre pulse rate multiplier for ultra-low phase-noise signal generation,” arXiv:1106.5195v1 (2011).
  14. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000). [CrossRef] [PubMed]
  15. H. Telle, G. Steinmeyer, A. Dunlop, J. Stenger, D. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B69(4), 327–332 (1999). [CrossRef]
  16. E. Ivanov, S. Diddams, and L. Hollberg, “Analysis of noise mechanisms limiting the frequency stability of microwave signals generated with a femtosecond laser,” IEEE J. Sel. Top. Quantum Electron.9(4), 1059–1065 (2003). [CrossRef]
  17. J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed p-i-n photodiodes,” IEEE Photon. J.3(1), 140–151 (2011). [CrossRef]
  18. D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett.30(21), 2948–2950 (2005). [CrossRef] [PubMed]
  19. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett.34(5), 638–640 (2009). [CrossRef] [PubMed]
  20. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express18(2), 1667–1676 (2010). [CrossRef] [PubMed]
  21. Y. Nakajima, H. Inaba, K. Iwakuni, K. Hosaka, A. Onae, K. Minoshima, and F.-L. Hong, “All-fiber-based frequency comb with an intra-cavity waveguide electro-optic modulator,” in 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), (2010).
  22. H. Jiang, J. Taylor, F. Quinlan, T. Fortier, and S. Diddams, “Noise floor reduction of an Er:fiber laser-based photonic microwave generator,” IEEE Photon. J. (to be published).
  23. R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31(2), 97–105 (1983). [CrossRef]
  24. L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B65(2), 277–294 (1997). [CrossRef]
  25. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett.31(13), 1997–1999 (2006). [CrossRef] [PubMed]
  26. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett.31(20), 3046–3048 (2006). [CrossRef] [PubMed]
  27. N. Haverkamp, H. Hundertmark, C. Fallnich, and H. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B78(3–4), 321–324 (2004). [CrossRef]
  28. B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express13(26), 10622–10633 (2005). [CrossRef] [PubMed]
  29. E. N. Ivanov, M. E. Tobar, and R. A. Woode, “Microwave interferometry: application to precision measurements and noise reduction techniques,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control45(6), 1526–1536 (1998). [CrossRef] [PubMed]
  30. A. Hati, D. A. Howe, F. L. Walls, and D. K. Walker, “Merits of PM noise measurement over noise figure: a study at microwave frequencies,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(10), 1889–1894 (2006). [CrossRef] [PubMed]
  31. B. S. Sheard, M. B. Gray, and D. E. McClelland, “High-bandwidth laser frequency stabilization to a fiber-optic delay line,” Appl. Opt.45(33), 8491–8499 (2006). [CrossRef] [PubMed]
  32. S. Foster, A. Tikhomirov, and M. Milnes, “Fundamental thermal noise in distributed feedback fiber lasers,” IEEE J. Quantum Electron.43(5), 378–384 (2007). [CrossRef]
  33. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010). [CrossRef] [PubMed]
  34. M. J. Thorpe, D. R. Leibrandt, T. M. Fortier, and T. Rosenband, “Measurement and real-time cancellation of vibration-induced phase noise in a cavity-stabilized laser,” Opt. Express18(18), 18744–18751 (2010). [CrossRef] [PubMed]
  35. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics5(3), 158–161 (2011). [CrossRef]
  36. D. R. Leibrandt, M. J. Thorpe, M. Notcutt, R. E. Drullinger, T. Rosenband, and J. C. Bergquist, “Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments,” Opt. Express19(4), 3471–3482 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited