OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24396–24410

Image reconstruction in phase-contrast tomography exploiting the second-order statistical properties of the projection data

Cheng-Ying Chou and Pin-Yu Huang  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24396-24410 (2011)
http://dx.doi.org/10.1364/OE.19.024396


View Full Text Article

Enhanced HTML    Acrobat PDF (1061 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

X-ray phase-contrast tomography (PCT) methods seek to quantitatively reconstruct separate images that depict an object’s absorption and refractive contrasts. Most PCT reconstruction algorithms generally operate by explicitly or implicitly performing the decoupling of the projected absorption and phase properties at each tomographic view angle by use of a phase-retrieval formula. However, the presence of zero-frequency singularity in the Fourier-based phase retrieval formulas will lead to a strong noise amplification in the projection estimate and the subsequent refractive image obtained using conventional algorithms like filtered backprojection (FBP). Tomographic reconstruction by use of statistical methods can account for the noise model and a priori information, and thereby can produce images with better quality over conventional filtered backprojection algorithms. In this work, we demonstrate an iterative image reconstruction method that exploits the second-order statistical properties of the projection data can mitigate noise amplification in PCT. The autocovariance function of the reconstructed refractive images was empirically computed and shows smaller and shorter noise correlation compared to those obtained using the FBP and unweighted penalized least-squares methods. Concepts from statistical decision theory are applied to demonstrate that the statistical properties of images produced by our method can improve signal detectability.

© 2011 OSA

OCIS Codes
(100.5070) Image processing : Phase retrieval
(110.4280) Imaging systems : Noise in imaging systems
(110.7440) Imaging systems : X-ray imaging
(170.3010) Medical optics and biotechnology : Image reconstruction techniques

ToC Category:
Imaging Systems

History
Original Manuscript: September 7, 2011
Revised Manuscript: October 15, 2011
Manuscript Accepted: October 23, 2011
Published: November 14, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Cheng-Ying Chou and Pin-Yu Huang, "Image reconstruction in phase-contrast tomography exploiting the second-order statistical properties of the projection data," Opt. Express 19, 24396-24410 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24396


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Cloetens, W. Ludwig, E. Boller, L. Helfen, L. Salvo, R. Mache, and M. Schlenker, “Quantitative phase-contrast tomography using coherent synchrotron radiation,” in Developments in X-Ray Tomography III, U. Bonse, ed., Proc. SPIE4503, 82–91 (2002).
  2. S. Mayo, T. Davis, T. Gureyev, P. Miller, D. Paganin, A. Pogany, A. Stevenson, and S. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express11, 2289–2302 (2003). [CrossRef] [PubMed]
  3. D. M. Paganin, Coherent X-Ray Optics (Oxford University Press, New York, 2006).
  4. R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol.49, 3573–3583 (2004). URL http://stacks.iop.org/0031-9155/49/3573 . [CrossRef] [PubMed]
  5. S. Fiedler, A. Bravin, J. Keyrilainen, M. Fernandaz, P. Suortti, W. Thomlinson, M. Tenhenun, P. Virkkunen, and M. Karjalainen-Lindsberg, “Imaging lobular breast carcinoma: comparison of synchrotron radiation CT-DEI technique with clinical CT, mammography and histology,” Phys. Med. Biol.49, 1–15 (2004). [CrossRef]
  6. F. Arfelli, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. D. Palma, M. D. Michiel, M. Fabrizioli, R. Longo, R. H. Menk, A. Olivo, S. Pani, D. Pontoni, P. Poropat, M. Prest, A. Rashevsky, M. Ratti, L. Rigon, G. Tromba, A. Vacchi, E. Vallazza, and F. Zanconati, “Mammography with synchrotron radiation: phase-detection techniques,” Radiol.215, 286–293 (2000).
  7. A. V. Bronnikov, “Theory of quantitative phase-contrast computed tomography,” J. Opt. Soc. Am. A19, 472–480 (2002). [CrossRef]
  8. T. E. Gureyev, Y. I. Nesterets, D. M. Paganin, and S. W. Wilkins, “Effects of incident illumination on in-line phase-contrast imaging,” J. Opt. Soc. Am. A23, 34–42 (2006). URL http://josaa.osa.org/abstract.cfm?URI=josaa-23-1-34 . [CrossRef]
  9. P. McMahon, A. Peele, D. Paterson, K. A. Nugent, A. Snigirev, T. Weitkamp, and C. Rau, “X-ray tomographic imaging of the complex refractive index,” Appl. Phys. Lett.83, 1480–1482 (2003). [CrossRef]
  10. K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. M. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x-rays,” Phys. Rev. Lett.77, 2961–2964 (1996). [CrossRef] [PubMed]
  11. P. Cloetens, M. Pateyron-Salome, J. Y. Buffiere, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys.81, 5878–5886 (1997). [CrossRef]
  12. M. Langer, P. Cloetens, J. P. Guigay, and F. Peyrin, “Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography,” Med. Phys.35, 4556–66 (2008). [CrossRef] [PubMed]
  13. D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy III. The effects of noise,” J. Microsc.214, 51–61 (2003). [CrossRef]
  14. C.-Y. Chou and M. A. Anastasio, “Influence of imaging geometry on noise texture in quantitative in-line X-ray phase-contrast imaging,” Opt. Express17, 14,466–14,480 (2009). [CrossRef]
  15. C.-Y. Chou and M. A. Anastasio, “Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography,” Med. Phys.37, 270 (2010). [CrossRef] [PubMed]
  16. C.-Y. Chou and M. A. Anastasio, “Influence of imaging geometry on noise texture in x-ray in-line phase-contrast imaging,” in Medical Imaging 2008: Physics of Medical Imaging, J. Hsieh and E. Samei, eds., Proc. SPIE6913, 69131Z (2008). URL http://link.aip.org/link/?PSI/6913/69131Z/1 .
  17. C.-Y. Chou and M. A. Anastasio, “Statistical properties of X-ray phase-contrast tomography,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009, pp. 6648 –6650 (2009). [CrossRef] [PubMed]
  18. P. Cloetens, “Contribution to Phase Contrast Imaging, Reconstruction and Tomography with Hard Synchrotron Radiation: Principles, Implementation and Applications,” Ph.D. thesis, Vrije Universiteit Brussel (1999).
  19. W. D. Stanley, G. R. Dougherty, and R. Dougherty, Digital Signal Processing, 2nd ed. (Reston Publishing Company, Inc., Reston, VA, 1984).
  20. J.-P. Guigay, “Fourier transform analysis of Fresnel diffraction patterns and in-line holograms,” Optik49, 121–125 (1977).
  21. X. Wu and H. Liu, “Clinical implementation of X-ray phase-contrast imaging: theoretical foundations and design considerations,” Med. Phys.30, 2169–2179 (2003). [CrossRef] [PubMed]
  22. C. J. Kotre and I. P. Birch, “Phase contrast enhancement of x-ray mammography: a design study,” Phys. Med. Biol.44, 2853–2866 (1999). [CrossRef] [PubMed]
  23. P. Cloetens, W. Ludwig, E. Boller, L. Helfen, L. Salvo, R. Mache, and M. Schlenker, “Quantitative phase contrast tomography using coherent synchrotron radiation,” in Developments in X-Ray Tomography III, U. Bonse, ed., Proc. SPIE4503, 82–91 (2001).
  24. R. Lewitt, “Alternatives to voxels for image representation in iterative reconstruction algorithms,” Phys. Med. Biol.37, 705–716 (1992). [CrossRef] [PubMed]
  25. M. Defrise and G. T. Gullberg, “Image reconstruction,” Phys. Med. Biol.51, R139 (2006). URL http://stacks.iop.org/0031-9155/51/i=13/a=R09 . [CrossRef] [PubMed]
  26. D. Snyder and M. Miller, “The use of sieves to stabilize images produced with the EM algorithm for emission tomography,” IEEE Trans. Nucl. Sci.32, 3864–3872 (1985). [CrossRef]
  27. J. Fessler and S. Booth, “Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction,” IEEE Trans. Image Process.8, 688–699 (1999). [CrossRef]
  28. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes (McGraw Hill, New York, 2002).
  29. H. H. Barrettt and K. J. Myers, Foundations of Image Science, Wiley Series in Pure and Applied Optics (John Wiley & Sons, Inc., Hoboken, New Jersey, 2004).
  30. M. Bertero, Introduction to inverse problems in imaging (Taylor & Francis, 1998). [CrossRef]
  31. E. Mumcuoglu, R. Leahy, S. R. Cherry, and Z. Zhou, “Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images,” IEEE Trans. Med. Imag.13, 687–701 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited