OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24424–24433

Isotropic broadband absorption by a macroscopic self-organized plasmonic crystal

Hugo Frederich, Fangfang Wen, Julien Laverdant, Laurent Coolen, Catherine Schwob, and Agnès Maître  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24424-24433 (2011)
http://dx.doi.org/10.1364/OE.19.024424


View Full Text Article

Enhanced HTML    Acrobat PDF (1743 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the plasmonic properties of a two-dimensional periodic metallic grating of macroscopic size obtained by gold deposition on a self-assembled silica opal. Structural characterization shows a transition from microscopic order to isotropy at macroscopic scale. Optical reflection spectra exhibit a dip of almost complete absorption due to coupling to surface-plasmon-polaritons (SPP). This is explained by theoretical calculations introducing a density of coupled SPP modes. We demonstrate, at a given incidence angle, a broad continuum of coupled wavelengths over the visible spectrum. This opens new possibilities in fields where light-plasmon coupling is required over a broad range of wavelengths and incidence orientations.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 6, 2011
Revised Manuscript: October 21, 2011
Manuscript Accepted: October 24, 2011
Published: November 14, 2011

Citation
Hugo Frederich, Fangfang Wen, Julien Laverdant, Laurent Coolen, Catherine Schwob, and Agnès Maître, "Isotropic broadband absorption by a macroscopic self-organized plasmonic crystal," Opt. Express 19, 24424-24433 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24424


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  2. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D41, 013001 (2008). [CrossRef]
  3. J. C. Brown and M. J. T. Milton, “Nanostructures and nanostructured substrates for surface enhanced Raman scattering (SERS),” J. of Raman Spec.39, 1313–1326 (2008). [CrossRef]
  4. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics1, 5–33 (2006). [CrossRef] [PubMed]
  5. S. Scarano, M. Mascini, A. P.F. Turner, and M. Minunni, “Surface plasmon resonance imaging for affinity-based biosensors,” Biosensors and bioelectronics25, 957–966 (2010). [CrossRef]
  6. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diodes,” IEEE J. Quantum Electron.36, 1131–1144 (2000). [CrossRef]
  7. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat.9, 205–213 (2010). [CrossRef]
  8. R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys.105, 033107 (2009). [CrossRef]
  9. C. Vion, P. Spinicelli, L. Coolen, C. Schwob, J.-M. Frigerio, J.-P. Hermier, and A. Maître, “Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface,” Opt. Express18, 7440–7455 (2010). [CrossRef] [PubMed]
  10. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95, 183503 (2009). [CrossRef]
  11. W. Zhou, H. Gao, and T. W. Odom, “Toward broadband plasmonics : tuning dispersion in rhombic plasmonic crystals,” ACS Nano4, 1241–1247 (2010). [CrossRef] [PubMed]
  12. J. Zhang, Y.-J. Ye, X. Wang, P. Rochon, and M. Xiao, “Coupling between semiconductor quantum dots and two-dimensional surface plasmons,” Phys. Rev. B72, 201306(R) (2005).
  13. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett.77, 2670–2673 (1996). [CrossRef] [PubMed]
  14. C. Lopez, “Materials aspects of photonic crystals,” Adv. Mater.15, 1679–1704 (2003). [CrossRef]
  15. F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, “Opals : status and prospects,” Angew. Chem. Int. Ed.48, 6212–6233 (2009). [CrossRef]
  16. A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett.8, 4033–4038 (2008). [CrossRef] [PubMed]
  17. H. W. Yan, C. F. Blanford, B. T. Holland, M. Parent, W. H. Smyrl, and A. Stein, “A chemical synthesis of periodic macroporous NiO and metallic Ni,” Adv. Mater.11, 1003–1006 (1999). [CrossRef]
  18. O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, “A class of porous metallic nanostructures,” Nature401, 548 (1999). [CrossRef]
  19. P. Jiang, J. Cizeron, J. F. Bertone, and V. L. Colvin, “Preparation of macroporous metal films from colloidal crystals,” J. Am. Chem. Soc.121, 7957–7958 (1999). [CrossRef]
  20. A. V. Akimov, A. A. Meluchev, D. A. Kurdyukov, A. V. Scherbakov, A. Holst, and V. G. Golubev, “Plasmonic effects and visible light diffraction in three-dimensional opal-metal photonic crystals,” Appl. Phys. Lett.90, 171108 (2007). [CrossRef]
  21. J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography : a materials general fabrication process for periodic particlearray surfaces,” J. Vac. Sci. Technol. A13, 1553–1558 (1995). [CrossRef]
  22. P. Zhang, Z. Wang, H. Dong, J. Sun, J. Wu, H.-T. Wang, S. Zhu, N. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater.18, 1612–1616 (2006). [CrossRef]
  23. C. Farcau and S. Astilean, “Probing the unusual optical transmission of silver films deposited on two-dimensional regular arrays of polystyrene microspheres,” J. Opt. A9, S345–S349 (2007). [CrossRef]
  24. R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7, 2094–2100 (2007). [CrossRef]
  25. S. Mahajan, M. Abdelsalam, Y. Suguwara, S. Cintra, Andrea Russell, J. Baumberg, and P. Bartlett, “Tuning plasmons on nano-structured substrates for NIR-SERS,” Phys. Chem. Chem. Phys.9, 104–109 (2007). [CrossRef]
  26. N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express19, 11256–11263 (2011). [CrossRef] [PubMed]
  27. L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys. A84, 373–377 (2006). [CrossRef]
  28. Z.-B. Wang, Y.-H. Ye, Y.-A. Zhang, and J.-Y. Zhang, “Visible transmission through metal-coated colloidal crystals,” Appl. Phys. A97, 225–228 (2009). [CrossRef]
  29. L. Landström, D. Brodoceanu, D. Bäuerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express17, 761–772 (2009). [CrossRef] [PubMed]
  30. B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface : gold film terminated opals,” Phys. Rev. B82, 035119 (2010). [CrossRef]
  31. W. Mu, D.-K. Hwang, R. P. H. Chang, M. Sukharev, D. B. Tice, and J. B. Ketterson, “Surface-enhanced Raman scattering from silver-coated opals,” J. Chem. Phys.134, 124312 (2011). [CrossRef] [PubMed]
  32. J. Stropp, G. Trachta, G. Brehm, and S. Schneider, “A new version of AgFON substrates for high-throughput analytical SERS applications,” J. Raman Spectrosc.34, 26–32 (2003). [CrossRef]
  33. K. Liu, C. Sun, N. C. Linn, B. Jiang, and P. Jiang, “Wafer-scale surface-enhanced Raman scattering substrates with highly reproducible enhancement,” J. Phys. Chem. C113, 14804 (2009). [CrossRef]
  34. A. N. Gruzintsev, G. A. Emel’chenko, V. M. Masalov, M. Romanelli, C. Barthou, P. Benalloul, and A. Maître, “Luminescent properties of opals,” Inorg. Mater.44, 159–164 (2008). [CrossRef]
  35. C. Vion, C. Barthou, P. Bénalloul, C. Schwob, L. Coolen, A. Gruzintev, G. Emelchenko, W. Masalov, J.-M. Frigerio, and A. Maître, “Manipulating emission of CdTeSe nanocrystals embedded in three-dimensional photonic crystals,” J. Appl. Phys.105, 113120 (2009). [CrossRef]
  36. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005). [CrossRef]
  37. The SPP skin depth δ is obtained from the experimentally measured θ and λ by (i) considering that the peak in ρ(λ) (Fig. 5(b)) corresponds to values of ϕ = 10°, (ii) calculating the experimental kSPP through the momentum conservation in eq. 1 with k// = (2π/λ)sinθ with ϕ = 10°, and (iii) using the energy conservation condition k02=(2πλ)2=kSPP2+(1/δ)2 to find δ.
  38. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun.19, 431–436 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited