OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24454–24459

Optimization of liquid crystal structures for real time holography applications

B. Sahraoui, A. Anczykowska, S. Bartkiewicz, and J. Mysliwiec  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24454-24459 (2011)
http://dx.doi.org/10.1364/OE.19.024454


View Full Text Article

Enhanced HTML    Acrobat PDF (761 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present results of experiments designed to increase our understanding of the photorefractive effect occurring during processes of dynamic hologram generation in Hybrid Photorefractive Liquid Crystal Structures (HPLCS). We also propose equivalent mathematical model which can be used to optimize those structures in order to obtain the highest diffraction efficiency in possibly shortest time.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.0090) Holography : Holography
(160.3710) Materials : Liquid crystals
(160.5320) Materials : Photorefractive materials
(090.5694) Holography : Real-time holography

ToC Category:
Holography

History
Original Manuscript: August 2, 2011
Revised Manuscript: September 9, 2011
Manuscript Accepted: September 10, 2011
Published: November 15, 2011

Citation
B. Sahraoui, A. Anczykowska, S. Bartkiewicz, and J. Mysliwiec, "Optimization of liquid crystal structures for real time holography applications," Opt. Express 19, 24454-24459 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24454


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Nakagawa, M. Zgonik, and P. Günter, “Reflection gratings in self-pumped phase-conjugate mirrors,” J. Opt. Soc. Am. B14(4), 839–845 (1997). [CrossRef]
  2. S. Zwick, T. Haist, M. Warber, and W. Osten, “Dynamic holography using pixelated light modulators,” Appl. Opt.49(25), F47–F58 (2010). [CrossRef] [PubMed]
  3. S. Bartkiewicz, P. Sikorski, and A. Miniewicz, “Optical image correlator realized with a hybrid liquid-crystal-photoconducting polymer structure,” Opt. Lett.23(22), 1769–1771 (1998). [CrossRef] [PubMed]
  4. J. Mysliwiec, S. Bartkiewicz, and A. Miniewicz, “Influence of light on self-diffraction process in liquid crystal sells with photoconducting polymeric layers,” Opto-Electron. Rev.10, 53–58 (2002).
  5. J. Merlin, E. Chao, M. Winkler, K. Singer, P. Korneychuk, and Y. Reznikov, “All-optical switching in a nematic liquid crystal twist cell,” Opt. Express13(13), 5024–5029 (2005). [CrossRef] [PubMed]
  6. G. Cook, A. V. Glushchenko, V. Reshetnyak, A. T. Griffith, M. A. Saleh, and D. R. Evans, “Nanoparticle doped organic-inorganic hybrid photorefractives,” Opt. Express16(6), 4015–4022 (2008). [CrossRef] [PubMed]
  7. E. V. Rudenko and A. V. Sukhov, “Photoinduced conductivity and photorefraction in nematic liquid crystals,” JETP Lett.59, 142–145 (1994).
  8. I. C. Khoo, “Orientation photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron.32(3), 525–534 (1996). [CrossRef]
  9. S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron.6(56), 219–224 (1996). [CrossRef]
  10. F. Simoni, G. Cipparrone, A. Mazzulla, and P. Pagliusi, “Polymer dispersed liquid crystals: effects of photorefractivity and local heating on holographic recording,” Chem. Phys.245(1-3), 429–436 (1999). [CrossRef]
  11. N. Tabiryan and C. Umeton, “Surface-activated photorefractivity and electro-optic phenomena in liquid crystals,” J. Opt. Soc. Am. B15(7), 1912–1917 (1998). [CrossRef]
  12. L. Sznitko, S. Bartkiewicz, A. Anczykowska, and J. Mysliwiec, “Study of self-diffraction phenomenon in hybrid liquid crystal panel,” J. Phys. D Appl. Phys.42(20), 205107 (2009). [CrossRef]
  13. P. Pagliusi and G. Cipparone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett.80(2), 168–170 (2002). [CrossRef]
  14. M. Kaczmarek, A. Dyadusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004). [CrossRef]
  15. P. Korneychuk, O. Tereshchenko, Y. Reznikov, V. Reshetnyak, and K. Singer, “Hidden surface photorefractive gratings in a nematic-liquid crystal cell in the absence of a deposited alignment layer,” J. Opt. Soc. Am. B23(6), 1007–1011 (2006). [CrossRef]
  16. J.-I. Baek, Y.-H. Kwon, J. C. Kim, and T.-H. Yoon, “Dual-mode switching of a liquid crystal panel for viewing angle control,” Appl. Phys. Lett.90(10), 101104 (2007). [CrossRef]
  17. I. C. Khoo, “Liquid crystal optics and electro-optics” in Liquid Crystals, (Wiley-Interscience, New Jersey, 2007).
  18. R. Dąbrowski, J. Dziaduszek, A. Ziółek, Ł. Szczuciński, Z. Stolarz, G. Sasnouski, V. Bezborodov, W. Lapanik, S. Gauza, and S. T. Wu, “Low viscosity, high birefringence liquid crystalline compounds and mixtures,” Opto-Electron. Rev.15(1), 47–51 (2007). [CrossRef]
  19. A. Sobolewska and S. Bartkiewicz, “Three gratings coupling during the holographic grating recording process in azobenzene-functionalized polymer,” Appl. Phys. Lett.92(25), 253305 (2008). [CrossRef]
  20. M. G. Moharam and L. Young, “Criterion for Bragg and Raman-Nath diffraction regimes,” Appl. Opt.17(11), 1757–1759 (1978). [CrossRef] [PubMed]
  21. W. D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys.43(12), 5033–5040 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited