OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24468–24482

Remnants of semiclassical bistability in the few-photon regime of cavity QED

Joseph Kerckhoff, Michael A. Armen, and Hideo Mabuchi  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24468-24482 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2179 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled 133Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (∼ 10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing.

© 2011 OSA

OCIS Codes
(000.1600) General : Classical and quantum physics
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(130.3750) Integrated optics : Optical logic devices
(190.1450) Nonlinear optics : Bistability
(190.3100) Nonlinear optics : Instabilities and chaos
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(020.1335) Atomic and molecular physics : Atom optics
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Atomic and Molecular Physics

Joseph Kerckhoff, Michael A. Armen, and Hideo Mabuchi, "Remnants of semiclassical bistability in the few-photon regime of cavity QED," Opt. Express 19, 24468-24482 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photonics 3, 687–695 (2009). [CrossRef]
  2. T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity,” Phys. Rev. Lett. 102, 083601 (2009). [CrossRef] [PubMed]
  3. L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef] [PubMed]
  4. C. Savage and H. .J. Carmichael, “Single-atom optical bistability,” IEEE J. Quantum Electron. 24, 1495–1498 (1988). [CrossRef]
  5. G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, “Optical bistability and photon statistics in cavity quantum electrodynamics,” Phys. Rev. Lett. 67, 1727 (1991). [CrossRef] [PubMed]
  6. M. A. Armen and H. Mabuchi, “Low-lying bifurcations in cavity quantum electrodynamics,” Phys. Rev. A 73, 063801 (2006). [CrossRef]
  7. J. Kerckhoff, M. A. Armen, D. S. Pavlichin, and H. Mabuchi, “The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying,” Opt. Express 19, 6478–6486 (2011). [CrossRef] [PubMed]
  8. D. A. B. Miller, “Are optical transistors the logical next step?,” Nature Photonics 43–5 (2010). [CrossRef]
  9. S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering (Perseus, Cambridge, MA, 1994).
  10. H. Mabuchi, “Coherent-feedback control strategy to suppress spontaneous switching in ultralow power optical bistability,” Appl. Phys. Lett. 98, 193109 (2011). [CrossRef]
  11. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450, 862–865 (2007). [CrossRef] [PubMed]
  12. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nature Physics 4, 859–863 (2008). [CrossRef]
  13. L. A. Lugiato, in Progress in Optics, edited by E. Wolf (North-Holland, Amsterdam, 1984), Vol. XXI.
  14. A. Szöke, V. Daneu, J. Goldhar, and N. A. Kurnit, “Bistable optical element and its applications,” Appl. Phys. Lett. 15, 376 (1969). [CrossRef]
  15. S. D. Smith, “Optical bistability, photonic logic, and optical computation,” Appl. Opt. 25, 1550–1564 (1986). [CrossRef] [PubMed]
  16. S. Ya. Kilin and T. B. Krinitskaya, “Single-atom phase bistability in a fundamental model of quantum optics,” J. Opt. Soc. Am. B 8, 2289 (1991). [CrossRef]
  17. C. J. Hood, M. S. Chapman, T. W. Lynn, and H. J. Kimble, “Real-time cavity QED with single atoms,” Phys. Rev. Lett. 80, 4157–4160 (1998). [CrossRef]
  18. X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91, 051113 (2007). [CrossRef]
  19. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nature Photonics 4, 477–483 (2010). [CrossRef]
  20. H. J. Carmichael in Frontiers in Quantum Optics, edited by E. R. Pike and S. Sarkar (Adam Hilger, Bristol, 1986).
  21. H. Gang, C. Z. Ning, and H. Haken, “Codimension-two bifurcations in single-mode optical bistable systems,” Phys. Rev. A 41, 2702 (1990). [CrossRef] [PubMed]
  22. H. Gang, C. Z. Ning, and H. Haken, “Distribution of subcritical Hopf bifurcations and regular and chaotic attractors in optical bistable systems,” Phys. Rev. A 41, 3975 (1990). [CrossRef] [PubMed]
  23. H. Mabuchi, “Derivation of Maxwell-Bloch-type equations by projection of quantum models,” Phys. Rev. A 78, 015801 (2008). [CrossRef]
  24. M. A. Armen, A. E. Miller, and H. Mabuchi, “Spontaneous dressed-state polarization in the strong driving regime of cavity QED,” Phys. Rev. Lett. 103173601 (2009). [CrossRef] [PubMed]
  25. A. C. Doherty, A. S. Parkins, S. M. Tan, and D. F. Walls, “Motion of a two-level atom in an optical cavity,” Phys. Rev. A 56, 833 (1997). [CrossRef]
  26. S. M. Tan, “A computational toolbox for quantum and atomic optics,” J. Opt. B: Quantum Semiclass. Opt. 1, 424–432 (1999). [CrossRef]
  27. J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi, “Designing quantum memories with embedded control: Photonic circuits for autonomous quantum error correction,” Phys. Rev. Lett. 105040502 (2010). [CrossRef] [PubMed]
  28. H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. .J. Kimble, “Real-time detection of individual atoms falling through a high-finesse optical cavity,” Opt. Lett. 21, 1393–1395 (1996). [CrossRef] [PubMed]
  29. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 3197 (1983). [CrossRef]
  30. P. Berman., Ed., Cavity Quantum Electrodynamics (San Diego: Academic Press, 1994).
  31. H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993).
  32. C. W. Gardiner and P. Zoller, Quantum Noise (Springer-Verlag, Berlin, 2004).
  33. A. Barchielli, “Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics,” Quantum Opt. 2423–441 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited