OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24522–24529

A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator

Siddharth Tallur, Suresh Sridaran, and Sunil A. Bhave  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24522-24529 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1953 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cavity opto-mechanics enabled radiation pressure (RP) driven oscillators shown in the past offer an all optical Radio Frequency (RF) source without the need for external electrical feedback. However these oscillators require external tapered fiber or prism coupling and non-standard fabrication processes. In this work, we present a CMOS compatible fabrication process to design high optical quality factor opto-mechanical resonators in silicon nitride. The ring resonators designed in this process demonstrate low phase noise RP driven oscillations. Using integrated grating couplers and waveguide to couple light to the micro-resonator eliminates 1/f3 and other higher order phase noise slopes at close-to-carrier frequencies present in previous demonstrations. We present an RP driven opto-mechanical oscillator (OMO) operating at 41.97MHz with a signal power of −11dBm and phase noise of −85dBc/Hz at 1kHz offset with only 1/f2 noise down to 10Hz offset from carrier.

© 2011 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.4910) Optical devices : Oscillators
(230.4685) Optical devices : Optical microelectromechanical devices
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Optical Devices

Original Manuscript: September 16, 2011
Manuscript Accepted: October 26, 2011
Published: November 15, 2011

Siddharth Tallur, Suresh Sridaran, and Sunil A. Bhave, "A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator," Opt. Express 19, 24522-24529 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 29,  321(5893), 1172–1176, (2008). [CrossRef]
  2. A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science 14,  5980(5893), 812–813, (2010). [CrossRef]
  3. M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006). [CrossRef]
  4. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005). [CrossRef] [PubMed]
  5. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivire, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009). [CrossRef]
  6. Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduction scheme for nanomechanical systems based on dielectric forces,” Nature 458, 1001–1004 (2009). [CrossRef] [PubMed]
  7. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett.,  102, 113601, (2009). [CrossRef] [PubMed]
  8. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett. 36, 3338–3340 (2011). [CrossRef] [PubMed]
  9. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 7882 (2009).
  10. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633636 (2009). [CrossRef] [PubMed]
  11. S. Tallur, S. Sridaran, and S. A. Bhave, “Phase noise modeling of opto-mechanical oscillators,” IEEE Frequency Control Symposium (FCS 2010), Newport Beach, California, 268–272, (2010).
  12. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009). [CrossRef] [PubMed]
  13. S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006). [CrossRef]
  14. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 12, 96–107 (2006). [CrossRef]
  15. Low Phase Noise Quartz Crystal Oscillator, Model FE-102A. http://www.freqelec.com/qz_osc_fe102a.html

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited