OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24569–24576

Electrically pumped silicon waveguide light sources

Hasitha Jayatilleka, Arsam Nasrollahy-Shiraz, and Anthony J. Kenyon  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24569-24576 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report simulations of electrically pumped waveguide emitters in which the emissive layer contains silicon nanoclusters and erbium ions. Plasmonic coupling to metallic or semi-metallic overlayers provides enhancement of the radiative rate of erbium ions, enabling high quantum efficiency emission. Using 2D and 3D finite difference time domain (FDTD) simulations we show that up to 75% of the light emitted from the active layer can be coupled into a nanowire silicon rib waveguide. Our results suggest that such devices, which can readily be fabricated using CMOS processing techniques, pave the way for viable waveguide optical sources to be realized in silicon photonics.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.5990) Integrated optics : Semiconductors
(230.7390) Optical devices : Waveguides, planar
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: September 19, 2011
Revised Manuscript: October 21, 2011
Manuscript Accepted: November 2, 2011
Published: November 16, 2011

Hasitha Jayatilleka, Arsam Nasrollahy-Shiraz, and Anthony J. Kenyon, "Electrically pumped silicon waveguide light sources," Opt. Express 19, 24569-24576 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005). [CrossRef]
  2. L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter 15(26), R1169–R1196 (2003). [CrossRef]
  3. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  4. G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]
  5. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/ GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005). [CrossRef]
  6. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000). [CrossRef]
  7. K. Saxena, V. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009). [CrossRef]
  8. M. Ramuz, L. Burgi, R. Stanley, and C. Winnewisser, “Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: Toward monolithically integrated optical sensors,” J. Appl. Phys. 105(8), 084508 (2009). [CrossRef]
  9. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  10. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  11. S. Wedge, J. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85(2), 182 (2004). [CrossRef]
  12. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998). [CrossRef]
  13. O. Jambois, Y. Berencen, K. Hijazi, M. Wojdak, A. J. Kenyon, F. Gourbilleau, R. Rizk, and B. Garrido, “Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions,” J. Appl. Phys. 106(6), 063526 (2009). [CrossRef]
  14. O. Jambois, F. Gourbilleau, A. J. Kenyon, J. Montserrat, R. Rizk, and B. Garrido, “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express 18(3), 2230–2235 (2010). [CrossRef] [PubMed]
  15. A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, “Optical properties of PECVD erbium doped silicon-rich silica—Evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6(21), L319–L324 (1994). [CrossRef]
  16. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. Andreani, A. Canino, M. Miritello, R. L. Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89(24), 241114 (2006). [CrossRef]
  17. Y. Jun, R. Kekatpure, J. White, and M. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78(15), 153111 (2008). [CrossRef]
  18. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009). [CrossRef] [PubMed]
  19. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped MOS light sources,” Opt. Express 17(1), 185–192 (2009). [CrossRef] [PubMed]
  20. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010). [CrossRef] [PubMed]
  21. P. Horak, W. H. Loh, and A. J. Kenyon, “Modification of the Er3+ radiative lifetime from proximity to silicon nanoclusters in silicon-rich silicon oxide,” Opt. Express 17(2), 906–911 (2009). [CrossRef] [PubMed]
  22. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010). [CrossRef] [PubMed]
  23. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744 (1974). [CrossRef]
  24. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  25. N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, C. Sada, F. Gourbilleau, and R. Rizk, “Refractive index dependence of the absorption and emission cross sections at 1.54μm of Er coupled to Si nanoclusters,” Appl. Phys. Lett. 88(16), 161901 (2006). [CrossRef]
  26. J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  27. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010). [CrossRef] [PubMed]
  28. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  29. J. Bao, N. Yu, F. Capasso, T. Mates, M. Troccoli, and A. Belyanin, “Controlled modification of erbium lifetime in silicon dioxide with metallic overlayers,” Appl. Phys. Lett. 91(13), 131103 (2007). [CrossRef]
  30. P. Worthing, R. Amos, and W. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999). [CrossRef]
  31. R. Walters, J. Kalkman, A. Polman, H. Atwater, and M. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2,” Phys. Rev. B 73(13), 132302 (2006). [CrossRef]
  32. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited