OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24638–24646

Using shaped ultrafast laser pulses to detect enzyme binding

Chien-hung Tseng, Thomas C. Weinacht, Anna E. Rhoades, Matthew Murray, and Brett J. Pearson  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24638-24646 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (963 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use multiphoton quantum-control spectroscopy to discriminate between unbound and enzyme-bound NADH (reduced nicotinamide adenine dinucleotide) molecules in solution. Shaped ultrafast laser pulses are used to illuminate both forms of NADH, and the ratio of the fluorescence from the bound and unbound molecules for different pulse shapes allows us to measure binding without spectrally resolving the emitted fluorescence or relying on the absolute fluorescence yield. This permits determination of enzyme binding in situations where spectrally resolved measurements and absolute fluorescence yields are difficult to obtain, and makes the approach ideal for multiphoton microscopy with molecular discrimination.

© 2011 OSA

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(320.5540) Ultrafast optics : Pulse shaping
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 26, 2011
Revised Manuscript: October 13, 2011
Manuscript Accepted: October 15, 2011
Published: November 16, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Chien-hung Tseng, Thomas C. Weinacht, Anna E. Rhoades, Matthew Murray, and Brett J. Pearson, "Using shaped ultrafast laser pulses to detect enzyme binding," Opt. Express 19, 24638-24646 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Brumer and M. Shapiro, “Control of unimolecular reactions using coherent light,” Chem. Phys. Lett. 126, 541–546 (1986). [CrossRef]
  2. D. J. Tannor, R. Kosloff, and S. A. Rice, “Control pulse sequence induced control of selectivity of reactions: Exact quantum mechanical calculations,” J. Chem. Phys. 85, 5805–5820 (1986). [CrossRef]
  3. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000). [CrossRef] [PubMed]
  4. T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem 4, 418–438 (2003). [CrossRef] [PubMed]
  5. M. A. Dugan, J. X. Tull, and W. S. Warren, “High resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 2348–2358 (1997). [CrossRef]
  6. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Inst. 71, 1929–1960 (2000). [CrossRef]
  7. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992). [CrossRef] [PubMed]
  8. W. Denk, J. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  9. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nature Biotech. 21, 1369–1377 (2003). [CrossRef]
  10. J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827–840 (2004). [CrossRef]
  11. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002). [CrossRef] [PubMed]
  12. B. von Vacano and M. Motzkus, “Molecular discrimination of a mixture with single-beam Raman control,” J. Chem. Phys. 127, 144514 (2007). [CrossRef] [PubMed]
  13. X. G. Xu, S. O. Konorov, J. W. Hepburn, and V. Milner, “Noise autocorrelation spectroscopy with coherent Raman scattering,” Nature Phys. 4, 125–129 (2008). [CrossRef]
  14. B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10, 681–691 (2008). [CrossRef] [PubMed]
  15. A. C. W. van Rhijn, S. Postma, J. P. Korterik, J. L. Herek, and H. L. Offerhaus, “Chemically selective imaging by spectral phase shaping for broadband CARS around 3000 cm−1,” J. Opt. Soc. Am. B 26, 559–563 (2009). [CrossRef]
  16. J. Rehbinder, C. Pohling, T. Buckup, and M. Motzkus, “Multiplex coherent anti-Stokes Raman microspectroscopy with tailored Stokes spectrum,” Opt. Lett. 35, 3721–3723 (2010). [CrossRef] [PubMed]
  17. W. Wohlleben, T. Buckup, J. L. Herek, and M. Motzkus, “Coherent control for spectroscopy and manipulation of biological dynamics,” ChemPhysChem 6, 850–857 (2005). [CrossRef] [PubMed]
  18. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002). [CrossRef]
  19. J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Coherent control improves biomedical imaging with ultrashort shaped pulses,” J. Photochem. Photobio. A 180, 307 – 313 (2006). [CrossRef]
  20. J. P. Ogilvie, D. Débarre, X. Solinas, J.-L. Martin, E. Beaurepaire, and M. Joffre, “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express 14, 759–766 (2006). [CrossRef] [PubMed]
  21. R. S. Pillai, C. Boudoux, G. Labroille, N. Olivier, I. Veilleux, E. Farge, M. Joffre, and E. Beaurepaire, “Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses,” Opt. Express 17, 12741–12752 (2009). [CrossRef] [PubMed]
  22. I. Pastirk, J. M. D. Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003). [CrossRef] [PubMed]
  23. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57–60 (2001). [CrossRef] [PubMed]
  24. M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009). [CrossRef] [PubMed]
  25. T. Weinacht, “Distinguishing between molecules that look the same,” Physics 2, 51 (2009). [CrossRef]
  26. S. D. Clow, U. C. Hölscher, and T. C. Weinacht, “Achieving “perfect” molecular discrimination via coherent control and stimulated emission,” New J. Phys. 11, 115007 (2009). [CrossRef]
  27. K. A. Kasischke, H. D. Vishwasrao, P. J. Fisher, W. R. Zipfel, and W. W. Webb, “Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis,” Science 305, 99–103 (2004). [CrossRef] [PubMed]
  28. H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Bio. Chem. 280, 25119–25126 (2005). [CrossRef]
  29. H. D. Vishwasrao, “Quantitative two-photon redox fluorescence microscopy of neurometabolic dynamics,” Ph.D. thesis, Cornell University (2005).
  30. D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999). [CrossRef]
  31. A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, “Coherent phase control of resonance-mediated (2 + 1) three-photon absorption,” Phys. Rev. A 75, 031401 (2007). [CrossRef]
  32. C. Trallero-Herrero and T. C. Weinacht, “Transition from weak- to strong-field coherent control,” Phys. Rev. A 75, 063401 (2007). [CrossRef]
  33. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Inst. 68, 3277–3295 (1997). [CrossRef]
  34. Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Ann. Rev. Phys. Chem. 60, 277–292 (2009). [CrossRef]
  35. J. J. Holbrook and R. G. Wolfe, “Malate dehydrogenase. X. fluorescence microtitration studies of d-malate, hydroxymalonate, nicotinamide dinucleotide, and dihydronicotinamide-adenine dinucleotide binding by mitochondrial and supernatant porcine heart enzymes,” Biochemistry 11, 2499 (1972). [CrossRef] [PubMed]
  36. Developmental Resource for Biophysical Imaging Opto-Electronics (DRBIO) at Cornell University, “Two-photon action cross sections,” http://www.drbio.cornell.edu/cross_sections.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited