OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24687–24698

Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber

Rodrigo M. Gerosa, Danilo H. Spadoti, Christiano J. S. de Matos, Leonardo de S. Menezes, and Marcos A. R. Franco  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24687-24698 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (6854 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photonic crystal fiber (PCF) with a section of one of the holes next to the solid core filled with an index-matched liquid is studied. Liquid filling alters the core geometry, which locally comprises the original silica core, the liquid channel and the silica around it. It is demonstrated that when light reaches the filled section, it periodically and efficiently couples to the liquid, via the excitation of a number of modes of the composite core, with coupling lengths ranging from tens to hundreds of microns. The resulting modal-interference-modulated spectrum shows temperature sensitivity as high as 5.35 nm/°C. The proposed waveguide geometry presents itself as an interesting way to pump and/or to probe liquid media within the fiber, combining advantages usually found separately in liquid-filled hollow-core PCFs (high light-liquid overlap) and in solid-core PCFs (low insertion losses). Therefore, pumping and luminescence guiding with a PCF filled with a Rhodamine solution is also demonstrated.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 10, 2011
Revised Manuscript: November 3, 2011
Manuscript Accepted: November 5, 2011
Published: November 17, 2011

Rodrigo M. Gerosa, Danilo H. Spadoti, Christiano J. S. de Matos, Leonardo de S. Menezes, and Marcos A. R. Franco, "Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber," Opt. Express 19, 24687-24698 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibers,” Meas. Sci. Technol. 12(7), 854–858 (2001). [CrossRef]
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001). [CrossRef] [PubMed]
  3. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003). [CrossRef] [PubMed]
  4. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004). [CrossRef]
  5. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, “Water-core Fresnel fiber,” Opt. Express 13(10), 3890–3895 (2005). [CrossRef] [PubMed]
  6. C. J. S. De Matos, C. M. B. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15(18), 11207–11212 (2007). [CrossRef] [PubMed]
  7. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007). [CrossRef] [PubMed]
  8. S. Afshar V, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007). [CrossRef] [PubMed]
  9. J. Canning, M. Stevenson, T. K. Yip, S. K. Lim, and C. Martelli, “White light sources based on multiple precision selective micro-filling of structured optical waveguides,” Opt. Express 16(20), 15700–15708 (2008). [CrossRef] [PubMed]
  10. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009). [CrossRef]
  11. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010). [CrossRef] [PubMed]
  12. A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” IEEE Sens. J. (to be published).
  13. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J.-L. Auguste, and J.-M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005). [CrossRef] [PubMed]
  14. A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008). [CrossRef] [PubMed]
  15. K. E. Meissner, C. Holton, and W. B. Spillman., “Optical characterization of quantum dots entrained in microstructured optical fibers,” Physica E 26(1-4), 377–381 (2005). [CrossRef]
  16. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15(7), 3962–3967 (2007). [CrossRef] [PubMed]
  17. C. J. S. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007). [CrossRef] [PubMed]
  18. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004). [CrossRef]
  19. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005). [CrossRef] [PubMed]
  20. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27(10), 842–844 (2002). [CrossRef] [PubMed]
  21. Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18(17), 18056–18060 (2010). [CrossRef] [PubMed]
  22. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009). [CrossRef] [PubMed]
  23. M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, “Fiber in-line Mach-Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber,” Opt. Lett. 36(5), 636–638 (2011). [CrossRef] [PubMed]
  24. J. Du, Y. Liu, Z. Wang, Z. Liu, B. Zou, L. Jin, B. Liu, G. Kai, and X. Dong, “Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid,” Opt. Express 16(6), 4263–4269 (2008). [CrossRef] [PubMed]
  25. G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010). [CrossRef] [PubMed]
  26. W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010). [CrossRef]
  27. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995). [CrossRef]
  28. M. Midrio, M. P. Singh, and C. G. Someda, “The space filling mode of holey fibers: an analytical vectorial solution,” J. Lightwave Technol. 18(7), 1031–1037 (2000). [CrossRef]
  29. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 ° C,” Opt. Express 17(24), 21551–21559 (2009). [CrossRef] [PubMed]
  30. R. M. Gerosa, D. H. Spadoti, L. S. Menezes, and C. J. de Matos, “In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber,” Opt. Express 19(4), 3124–3129 (2011). [CrossRef] [PubMed]
  31. D. Kácik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Opt. Express 12(15), 3465–3470 (2004). [CrossRef] [PubMed]
  32. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited