OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24718–24729

Dispersion requirements in coherent frequency-to-time mapping

Victor Torres-Company, Daniel E. Leaird, and Andrew M. Weiner  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24718-24729 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1735 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The frequency-to-time mapping technique (also known as the temporal far-field phenomenon) usually requires a significant amount of dispersion to stretch an ultrashort optical pulse so that the intensity profile becomes a scaled replica of its optical spectrum. In this work, we study the near-to-far-field transition and find that the far-field condition can be relaxed in some cases relevant for radio-frequency (RF) waveform generation. This observation has allowed us to achieve intensity signals with an ultrabroad RF bandwidth content.

© 2011 OSA

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(260.2030) Physical optics : Dispersion
(320.5540) Ultrafast optics : Pulse shaping
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(320.7085) Ultrafast optics : Ultrafast information processing

ToC Category:
Ultrafast Optics

Original Manuscript: September 13, 2011
Revised Manuscript: October 31, 2011
Manuscript Accepted: October 31, 2011
Published: November 17, 2011

Victor Torres-Company, Daniel E. Leaird, and Andrew M. Weiner, "Dispersion requirements in coherent frequency-to-time mapping," Opt. Express 19, 24718-24729 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Weiner, Ultrafast Optics, (Wiley Interscience, 2009).
  2. V. Torres-Company, J. Lancis, and P. Andrés, “Space-Time analogies in Optics,” Prog. Opt.in press).
  3. Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33(11), 983–985 (1997). [CrossRef]
  4. M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett. 24(1), 1–3 (1999). [CrossRef] [PubMed]
  5. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008). [CrossRef]
  6. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010). [CrossRef]
  7. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006). [CrossRef] [PubMed]
  8. M. H. Asghari, Y. Park, and J. Azaña, “Complex-field measurement of ultrafast dynamic optical waveforms based on real-time spectral interferometry,” Opt. Express 18(16), 16526–16538 (2010). [CrossRef] [PubMed]
  9. S. Thomas, A. Malacarne, F. Fresi, L. Poti, and J. Azaña, “Fiber-based programmable picosecond optical pulse shaper,” J. Lightwave Technol. 28(12), 1832–1843 (2010). [CrossRef]
  10. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009). [CrossRef] [PubMed]
  11. D. R. Solli, S. Gupta, and B. Jalali, “Optical phase recovery in the dispersive Fourier transformation,” Appl. Phys. Lett. 95(23), 231108 (2009). [CrossRef]
  12. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003). [CrossRef]
  13. I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultrawideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005). [CrossRef]
  14. J. W. Goodman, Introduction to Fourier Optics, 3rd ed., (Roberts and Co. Publishers, 2004).
  15. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed., (John Wiley and Sons, 1998).
  16. C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral-shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007). [CrossRef]
  17. M. Abtahi, M. Dastmalchi, S. LaRochelle, and L. A. Rusch, “Generation of arbitrary UWB waveforms by spectral shaping and thermally controlled apodized FBGs,” J. Lightwave Technol. 27(23), 5276–5283 (2009). [CrossRef]
  18. J. D. McKinney, “Background-free arbitrary waveform generation via polarization pulse shaping,” IEEE Photon. Technol. Lett. 22(16), 1193–1195 (2010). [CrossRef]
  19. Y. Liu, S. G. Park, and A. M. Weiner, “Enhancement of narrow-band terahertz radiation from photoconducting antennas by optical pulse shaping,” Opt. Lett. 21(21), 1762–1764 (1996). [CrossRef] [PubMed]
  20. Y. Liu, S. G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2, 709–719 (1997).
  21. H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics 4(12), 833–839 (2010). [CrossRef]
  22. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000). [CrossRef]
  23. J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, “Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings,” Electron. Lett. 35(25), 2223–2224 (1999). [CrossRef]
  24. H. Chi, F. Zeng, and J. P. Yao, “Photonic generation of microwave signals based on pulse shaping,” IEEE Photon. Technol. Lett. 19(9), 668–670 (2007). [CrossRef]
  25. R. E. Saperstein and Y. Fainman, “Information processing with longitudinal spectral decomposition of ultrafast pulses,” Appl. Opt. 47(4), A21–A31 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited