OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 24838–24848

Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator

David Marpaung, Ludovic Chevalier, Maurizio Burla, and Chris Roeloffzen  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 24838-24848 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1585 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report and experimentally demonstrate the generation of impulse radio ultrawideband (UWB) pulses using a photonic chip frequency discriminator. The discriminator consists of three add-drop optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. This discriminator chip in combination with a phase modulator forms a temporal differentiator where phase modulation is converted to intensity modulation (PM-IM conversion). By means of tailoring the discriminator response using either the individual or the cascade of drop and through responses of the ORRs, first-order or second-order temporal differentiations are obtained. Using this principle, the generation of UWB monocycle, doublet and modified doublet pulses are demonstrated. The use of this CMOS-compatible discriminator is promising for the realization of a compact and low cost UWB transmitter.

© 2011 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.5060) Fiber optics and optical communications : Phase modulation
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(130.3120) Integrated optics : Integrated optics devices
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 30, 2011
Revised Manuscript: November 10, 2011
Manuscript Accepted: November 11, 2011
Published: November 21, 2011

David Marpaung, Ludovic Chevalier, Maurizio Burla, and Chris Roeloffzen, "Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator," Opt. Express 19, 24838-24848 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  2. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Wiener, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010). [CrossRef]
  3. J. Yao, F. Zheng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007). [CrossRef]
  4. J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010). [CrossRef]
  5. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun. 1(3), 29 (2010). [CrossRef] [PubMed]
  6. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008). [CrossRef] [PubMed]
  7. Y. Park, M. H. Asghari, R. Helsten, and J. Azaña, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photonics J. 2(6), 1040–1050 (2010).
  8. C. Wang, F. Zeng, and J. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007). [CrossRef]
  9. M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power efficient FCC-compliant UWB waveforms using FBGs: analysis and experiment,” J. Lightwave Technol. 26(5), 628–635 (2008). [CrossRef]
  10. Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1306 (2006). [CrossRef]
  11. S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett. 36(12), 2363–2365 (2011). [CrossRef] [PubMed]
  12. V. Torres-Company, K. Prince, and I. T. Monroy, “Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion,” Opt. Lett. 33(3), 222–224 (2008). [CrossRef] [PubMed]
  13. X. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17(12), 9680–9687 (2009). [CrossRef] [PubMed]
  14. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006). [CrossRef] [PubMed]
  15. Q. Wang and J. P. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express 15(22), 14667–14672 (2007). [CrossRef] [PubMed]
  16. J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, “Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator,” Opt. Lett. 33(3), 288–290 (2008). [CrossRef] [PubMed]
  17. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009). [CrossRef] [PubMed]
  18. F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006). [CrossRef]
  19. F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electro-optic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006). [CrossRef]
  20. J. Li, K. Xu, S. Fu, M. Tang, P. Shum, J. Wu, and J. Lin, “Photonic polarity-switchable ultra wideband pulse generation using a tunable Sagnac interferometer comb filter,” IEEE Photon. Technol. Lett. 20(15), 1320–1322 (2008). [CrossRef]
  21. S. Pan and J. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34(2), 160–162 (2009). [CrossRef] [PubMed]
  22. Y. Dai, J. Du, X. Fu, G. K. P. Lei, and C. Shu, “Ultrawideband monocycle pulse generation based on delayed interference of π/2 phase-shift keying signal,” Opt. Lett. 36(14), 2695–2697 (2011). [CrossRef] [PubMed]
  23. F. Liu, T. Wang, Z. Zhang, M. Qiu, and Y. Su, “On-chip photonic generation of ultra-wideband monocycle pulses,” Electron. Lett. 45(24), 1247–1248 (2009). [CrossRef]
  24. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,” Opt. Lett. 32(10), 1223–1225 (2007). [CrossRef] [PubMed]
  25. E. Zhou, X. Xu, K. S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett. 22(14), 1063–1065 (2010). [CrossRef]
  26. I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthrough in microwave photonics,” IEEE Photonics J. 3(2), 311–315 (2011).
  27. P. Samadi, L. R. Chen, C. Callender, P. Dumais, S. Jacob, and D. Celo, “RF arbitrary waveform generation using tunable planar lightwave circuit,” Opt. Commun. 284(15), 3737–3741 (2011). [CrossRef]
  28. L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part II: Experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010). [CrossRef]
  29. N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010). [CrossRef] [PubMed]
  30. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express 19(14), 13245–13256 (2011). [CrossRef] [PubMed]
  31. D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express 18(26), 27359–27370 (2010). [CrossRef] [PubMed]
  32. H. Nikokaar and M. Prasad, “Introduction to ultra wideband for wireless communications,” in Springer Science and Business Media (Springer-Verlag, New York, 2009).
  33. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011). [CrossRef]
  34. J. F. Bauters, M. J. R. Heck, D. John, M.-C. Tien, W. Li, J. S. Barton, D. J. Blumenthal, A. Leinse, and R. G. Heideman, “Ultra-low loss single mode silicon nitride waveguides with 0.7 dB/m propagation loss,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.12.LeSaleve.3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited