OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 24858–24870

Half Kapitza-Dirac effect of H 2 + molecule in intense standing-wave laser fields

Xianghe Ren, Jingtao Zhang, Zhizhan Xu, and D.-S. Guo  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 24858-24870 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The half Kapitza-Dirac effect of H 2 + molecule in an intense standing-wave laser field is studied with a focus on the influence of the molecular orbital symmetry and the molecular alignment on the photo-electron angular distributions (PADs). In standing-wave laser fields, the PADs split along the scattering angle due to the momentum change of electron with photons when it escapes from the laser fields. The structures and the symmetry of PADs are severely affected by the molecular orbital symmetry and the molecular alignment. For H 2 + molecule in ground state (σg), the PADs are severely changed by the molecular alignment only when the photoelectron kinetic energy is sufficiently high. For H 2 + molecule in the first excited state (σμ), the molecular alignment distinctively changes the PADs, irrelevant to the kinetic energy of photoelectrons. When the molecules are aligned either parallel with or perpendicular to the laser polarization, the PADs are symmetric about an axis. In other cases, the PADs do not show any symmetry. These results indicate that the molecular alignment can be used to control the splitting in the half Kapitza-Dirac effect.

© 2011 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Atomic and Molecular Physics

Original Manuscript: July 18, 2011
Revised Manuscript: September 3, 2011
Manuscript Accepted: November 3, 2011
Published: November 21, 2011

Xianghe Ren, Jingtao Zhang, Zhizhan Xu, and D.-S. Guo, "Half Kapitza-Dirac effect of H2+ molecule in intense standing-wave laser fields," Opt. Express 19, 24858-24870 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Bucksbaum, D. W. Schumacher, and M. Bashkansky, “High-Intensity Kapitza-Dirac Effect,” Phys. Rev. Lett. 61, 1182–1185 (1988). [CrossRef] [PubMed]
  2. P. L. Kapitza and P. A. M. Dirac, “The reflection of electrons from standing light waves,” Proc. Cambridge, Philos. Soc. 29, 297–300 (1933). [CrossRef]
  3. D.-S. Guo and G. W. F. Drake, “Multiphoton ionization in circularly polarized standing waves,” Phys. Rev. A 45, 6622–6635 (1992). [CrossRef] [PubMed]
  4. D. L. Freimund, K. Aflatoon, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature (London) 413, 142–143 (2002). [CrossRef]
  5. H. Batelaan, “The Kapitza-Dirac effect,” Comtemp. Phys. 41, 369–381 (2000). [CrossRef]
  6. P. J. Martin, P. L. Gould, B. G. Oldaker, A. H. Mikllich, and D. E. Pritchard, “Diffraction of atoms moving through a standing light wave,” Phys. Rev. A 36, 2495–2498 (1987). [CrossRef] [PubMed]
  7. P. L. Gould, G. A. Ruff, and D. E. Pritchard, “Diffraction of atoms by light: The near-resonant Kapitza-Dirac effect,” Phys. Rev. Lett. 56, 827–830 (1986). [CrossRef] [PubMed]
  8. O. Smirnova, D. L. Freimund, H. Batelaan, and M. Ivanov, “Kapitza-Dirac Diffraction without Standing Waves: Diffraction without a Grating?,” Phys. Rev. Lett. 92, 223601 (2004). [CrossRef] [PubMed]
  9. O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of Complex Molecules by Structures Made of Light,” Phys. Rev. Lett. 87, 160401 (2001). [CrossRef] [PubMed]
  10. C. Guo, “Multielectron Effects on Single-Electron Strong Field Ionization,” Phys. Rev. Lett. 85, 2276–2279 (2000). [CrossRef] [PubMed]
  11. J. Muth-Bőhm, A. Becker, and F. H. M. Faisal, “Suppressed Molecular Ionization for a Class of Diatomics in Intense Femtosecond Laser Fields,” Phys. Rev. Lett. 85, 2280–2283 (2000). [CrossRef]
  12. X. Ren, J. Zhang, P. Liu, Y. Wang, and Z. Xu, “Ionization suppression of diatomic molecules in strong laser fields,” Phys. Rev. A 78, 043411 (2008). [CrossRef]
  13. M. Foster, J. Colgan, O. Al-Hagan, J. L. Peacher, D. H. Madison, and M. S. Pindzola, “Angular distributions from photoionization of H2+,” Phys. Rev. A 75, 062707 (2007). [CrossRef]
  14. V. I. Usachenko, “Reply to Comment on Strong-field ionization of laser-irradiated light homonuclear diatomic molecules: A generalized strong-field approximation-linear combination of atomic orbitals model,” Phys. Rev. A 73, 047402 (2006). [CrossRef]
  15. A. Jaroń-Becker, A. Becker, and F. H. M. Faisal, “Ionization of N2, O2, and linear carbon clusters in a strong laser pulse,” Phys. Rev. A 69, 023410 (2004). [CrossRef]
  16. X. Ren, J. Zhang, Y. Wang, Z. Xu, and D.-S. Guo, “Effects of the internuclear vector on the photoelectron angular distributions of H2+,” Eur. J. Phys. D. 51, 401–407 (2009). [CrossRef]
  17. H. Stapelfeldt and T. Seideman, “Colloquium: Aligning molecules with strong laser pulses,” Rev. Mod. Phys. 75, 543–557 (2003). [CrossRef]
  18. D. Pavičić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, “Direct Measurement of the Angular Dependence of Ionization for N2, O2, and CO2 in Intense Laser Fields,” Phys. Rev. Lett. 98, 243001 (2007). [CrossRef]
  19. S. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Controlling field-free molecular orientation with combined single- and dual-color laser pulses,” Phys. Rev. A 83, 043410 (2011). [CrossRef]
  20. D.-S. Guo, T. Åberg, and B. Crasemann, “Scattering theory of multiphoton ionization in strong fields,” Phys. Rev. A 40, 4997–5005 (1989). [CrossRef] [PubMed]
  21. D.-S. Guo, “Theory of the Kapitza-Dirac effect in strong radiation fields,” Phys. Rev. A 53, 4311–4319 (1996). [CrossRef] [PubMed]
  22. J. Gao, D.-S. Guo, and Y.-S. Wu, “Resonant above-threshold ionization at quantized laser intensities,” Phys. Rev. A 61, 043406 (2000). [CrossRef]
  23. X. Li, J. Zhang, Z. Xu, P. Fu, D.-S. Guo, and R. R. Freeman, “Theory of the Kapitza-Dirac Diffraction Effect,” Phys. Rev. Lett. 92, 233603 (2004). [CrossRef] [PubMed]
  24. H. D. Cohen and U. Fano, “Interference in the Photo-Ionization of Molecules,” Phys. Rev. 150, 30–33 (1966). [CrossRef]
  25. J. Zhang, W. Zhang, Z. Xu, X. Li, P. Fu, D.-S. Guo, and R. R. Freeman, “The calculation of photoelectron angular distributions with jet-like structure from scattering theory,” J. Phys. B 35, 4809–4818 (2002). [CrossRef]
  26. T. K. Kjeldsen, C. Z. Bisgaard, L. B. Madsen, and H. Stapelfeldt, “Role of symmetry in strong-field ionization of molecules,” Phys. Rev. A 68, 063407 (2003). [CrossRef]
  27. T. J. Houser, P. G. Lykos, and E. L. Mehler, “One-Center Wavefunction for the Hydrogen Molecule Ion,” J. Chem. Phys. 38, 583–585 (1963). [CrossRef]
  28. M. Mathholm and N. E. Henriksen, “Field-Free Orientation of Molecules,” Phys. Rev. Lett. 87, 193001 (2001). [CrossRef]
  29. X. H. Ren, J. T. Zhang, Z. Z. Xu, and D.-S. Guo, “Angular splitting in half Kapitza-Dirac effect of H2+ molecules,” J. Opt. Soc. Am. B 27, 714–718 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited