OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25066–25076

Spatial and temporal variations in vector fields

C. Macías-Romero, M. R. Foreman, and P. Török  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25066-25076 (2011)
http://dx.doi.org/10.1364/OE.19.025066


View Full Text Article

Enhanced HTML    Acrobat PDF (2814 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new metric to characterise spatial variations occurring in a time varying vector field, and we derive a rotationally invariant formula that quantifies temporal fluctuations within a consistent framework. So as to highlight the physics behind these metrics, both are derived from a well–known experiment in polarimetry. The derivation yields a set of expressions in a two–dimensional space, which is subsequently expanded to n–dimensions for special cases. The resulting expressions of the temporal and spatial metrics are incorporated into the electromagnetic theory of coherence and polarisation. Examples are given in the context of single molecule detection when measuring asymmetrically and radially polarised beams.

© 2011 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(260.2130) Physical optics : Ellipsometry and polarimetry
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: September 19, 2011
Revised Manuscript: November 4, 2011
Manuscript Accepted: November 7, 2011
Published: November 23, 2011

Citation
C. Macías-Romero, M. R. Foreman, and P. Török, "Spatial and temporal variations in vector fields," Opt. Express 19, 25066-25076 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25066


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ellis, A. Dogariu, “Optical polarimetry of random fields,” Phys. Rev. Lett. 95(20), 203905 (2004). [CrossRef]
  2. A. F. Abouraddy, K. C. Toussaint, “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96(15), 153901 (2006). [CrossRef] [PubMed]
  3. K. Serrels, E. Ramsay, R. Warburton, D. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nature Phot. 2(5), 311–314 (2008). [CrossRef]
  4. T. Ha, T. Enderle, D. S. Chemla, P. R. Selvin, S. Weiss, “Single Molecule Dynamics Studied by Polarization Modulation,” Phys. Rev. Lett. 77(19), 3979–3982 (1996). [CrossRef] [PubMed]
  5. E. Wolf, “Optics in terms of observable quantities,” Il Nuovo Cimento 12(6), 884–888 (1954). [CrossRef]
  6. P. Munro, P. Török, “Properties of high-numerical-aperture Müller-matrix polarimeters.” Opt. Lett. 33, 2428–2430 (2008). [CrossRef] [PubMed]
  7. T. Shirai, E. Wolf, “Correlations between intensity fluctuations in stochastic electromagnetic beams of any state of coherence and polarization,” Opt. Commun. 272(2), 289–292 (2007). [CrossRef]
  8. H. C. Jacks, O. Korotkova, “Intensity–intensity fluctuations of stochastic fields produced upon weak scattering,” J. Opt. Soc. Am. A 28(6), 1139–1144 (2011). [CrossRef]
  9. E. Wolf, “Coherence properties of partially polarized electromagnetic radiation,” Il Nuovo Cimento 13(6), 1165–1181 (1959). [CrossRef]
  10. T. Setälä, A. Shevchenko, M. Kaivola, A. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66(1), 16615 (2002). [CrossRef]
  11. U. Fano, “A Stokes-Parameter Technique for the Treatment of Polarization in Quantum Mechanics,” Phys. Rev. 93(1), 121–123 (1954). [CrossRef]
  12. M. Neil, T. Wilson, R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microscopy 197, 219–223 (2000). [CrossRef]
  13. J. Gil, “Polarimetric characterization of light and media,” Europ. Phys. J. App. Phys. 40(1), 1–47 (2007). [CrossRef]
  14. J. Ellis, A. Dogariu, S. Ponomarenko, E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248(4–6), 333–337 (2005). [CrossRef]
  15. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  16. J. Movilla, G. Piquero, R. Martínez-Herrero, P. Mejías, “Parametric characterization of non-uniformly polarized beams,” Opt. Commun. 149(4–6), 230–234 (1998). [CrossRef]
  17. J. Ellis, A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29(6), 536–538 (2004). [CrossRef] [PubMed]
  18. H. Moya-Cessa, J. R. Moya-Cessa, J. Landgrave, A. Martinez-Niconoff, G. Perez-Leija, A. T. Friberg, “Degree of polarization and quantum-mechanical purity,” J. Europ. Opt. Soc. Rap. Public. 3(5), 08014 (2008). [CrossRef]
  19. P. Török, P. Higdon, T. Wilson, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Comm. 148(4–6), 300–315 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited