OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25143–25150

Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems

F. K. Fatemi  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25143-25150 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1064 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the use of cylindrical vector beams – beams with spatially varying polarization – for detecting and preparing the spin of a warm rubidium vapor in a spatially dependent manner. We show that a modified probe vector beam can serve as an atomic spin analyzer for an optically pumped medium, which spatially modulates absorption of the beam. We also demonstrate space-variant atomic spin by optical pumping with the vector beams. The beams are thus beneficial for making single-shot polarization-dependent measurements, as well as for providing a means of preparing samples with position-dependent spin.

© 2011 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(260.5430) Physical optics : Polarization

ToC Category:
Atomic and Molecular Physics

Original Manuscript: September 28, 2011
Revised Manuscript: November 7, 2011
Manuscript Accepted: November 10, 2011
Published: November 23, 2011

F. K. Fatemi, "Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems," Opt. Express 19, 25143-25150 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009). [CrossRef]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  3. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  4. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-324 . [PubMed]
  5. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-2-77 . [CrossRef] [PubMed]
  6. D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9(10), 490–497 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-10-490 . [CrossRef] [PubMed]
  7. K. J. Moh, X.-C. Yuan, J. Bu, R. E. Burge, and B. Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt. 46(30), 7544–7551 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-30-7544 . [CrossRef] [PubMed]
  8. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004). [CrossRef]
  9. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal, or hybrid polarizations,” Opt. Commun. 252(1-3), 12–21 (2005). [CrossRef]
  10. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22(5), 984–991 (2005). [CrossRef] [PubMed]
  11. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10828 . [CrossRef] [PubMed]
  12. F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE(01) hollow metal waveguide mode for atom guiding,” Opt. Express 18(1), 323–332 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-323 . [CrossRef] [PubMed]
  13. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999). [CrossRef]
  14. C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002). [CrossRef]
  15. L. J. Wong and F. X. Kärtner, “Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam,” Opt. Express 18(24), 25035–25051 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-24-25035 . [CrossRef] [PubMed]
  16. S. Tripathi and K. C. Toussaint., “Rapid Mueller matrix polarimetry based on parallelized polarization state generation and detection,” Opt. Express 17(24), 21396–21407 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21396 . [CrossRef] [PubMed]
  17. G. M. Lerman, A. Yanai, N. Ben-Yosef, and U. Levy, “Demonstration of an elliptical plasmonic lens illuminated with radially-like polarized field,” Opt. Express 18(10), 10871–10877 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10871 . [CrossRef] [PubMed]
  18. C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106(6), 060502 (2011). [CrossRef] [PubMed]
  19. A. V. Failla, S. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, “Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy,” Opt. Express 15(14), 8532–8542 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8532 . [CrossRef] [PubMed]
  20. L. Zhao, T. Wang, and S. F. Yelin, “Two-dimensional all-optical spatial light modulation with high speed in coherent media,” Opt. Lett. 34(13), 1930–1932 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-13-1930 . [CrossRef] [PubMed]
  21. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008). [CrossRef] [PubMed]
  22. M. Bashkansky, D. Park, and F. K. Fatemi, “Azimuthally and radially polarized light with a nematic SLM,” Opt. Express 18(1), 212–217 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-212 . [CrossRef] [PubMed]
  23. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  24. See, for instance, B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley & Sons, Inc., 1991), Chap. 8.
  25. S. E. Harris, “Electromagnetically-induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  26. E. Arimondo, “Relaxation processes in coherent-population trapping,” Phys. Rev. A 54(3), 2216–2223 (1996). [CrossRef] [PubMed]
  27. M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett. 100(22), 223601 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (217 KB)     
» Media 2: AVI (156 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited