OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25151–25160

Terahertz Brewster lenses

Matthias Wichmann, Benedikt Scherger, Steffen Schumann, Sina Lippert, Maik Scheller, Stefan F. Busch, Christian Jansen, and Martin Koch  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25151-25160 (2011)
http://dx.doi.org/10.1364/OE.19.025151


View Full Text Article

Enhanced HTML    Acrobat PDF (1253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Typical lenses suffer from Fresnel reflections at their surfaces, reducing the transmitted power and leading to interference phenomena. While antireflection coatings can efficiently suppress these reflections for a small frequency window, broadband antireflection coatings remain challenging. In this paper, we report on the simulation and experimental investigation of Brewster lenses in the THz-range. These lenses can be operated under the Brewster angle, ensuring reflection-free transmission of p-polarized light in an extremely broad spectral range. Experimental proof of the excellent focusing capabilities of the Brewster lenses is given by frequency and spatially resolved focus plane measurements using a fiber-coupled THz-TDS system.

© 2011 OSA

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.5440) Optical devices : Polarization-selective devices
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: September 28, 2011
Revised Manuscript: November 9, 2011
Manuscript Accepted: November 16, 2011
Published: November 23, 2011

Citation
Matthias Wichmann, Benedikt Scherger, Steffen Schumann, Sina Lippert, Maik Scheller, Stefan F. Busch, Christian Jansen, and Martin Koch, "Terahertz Brewster lenses," Opt. Express 19, 25151-25160 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25151


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt.41(16), 3075–3083 (2002). [CrossRef] [PubMed]
  2. U. B. Schallenberg, “Antireflection design concepts with equivalent layers,” Appl. Opt.45(7), 1507–1514 (2006). [CrossRef] [PubMed]
  3. A. Mahdjoub and L. Zighed, “New designs for graded refractive index antireflection coatings,” Thin solid films, Nat. Photonics478, 299–304 (2005).
  4. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  5. J. Xi, M. Schubert, J. Kim, E. Schubert, M. Chen, S. Lin, W. Liu, and J. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).
  6. K. Kawase and N. Hiromoto, “Terahertz-Wave Antireflection Coating on Ge and GaAs with Fused Quartz,” Appl. Opt.37(10), 1862–1866 (1998). [CrossRef] [PubMed]
  7. K. R. Armstrong and F. J. Low, “Far-infrared filters utilizing small particle scattering and antireflection coatings,” Appl. Opt.13(2), 425–430 (1974). [CrossRef] [PubMed]
  8. C. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sensing37(4), 1997–2003 (1999). [CrossRef]
  9. M. Ji, C. Musante, S. Yngvesson, A. Gatesman, and J. Waldman, “Study of parylene as anti-reflection coating for silicon optics at THz frequencies,” in Proceedings of the Eleventh International Symposium on Space Terahertz Technology (University of Michigan Solid-State Electronics Laboratory, Ann Arbor, MI, 2000), p. 407.
  10. A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett.10(7), 264–266 (2000). [CrossRef]
  11. H. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Gol'tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies,” Infrared Phys. Technol.42(1), 41–47 (2001). [CrossRef]
  12. I. Hosako, “Antireflection coating formed by plasma-enhanced chemical-vapor deposition for terahertz-frequency germanium optics,” Appl. Opt.42(19), 4045–4048 (2003). [CrossRef] [PubMed]
  13. W. Withayachumnankul, B. Fischer, S. Mickan, and D. Abbott, “Retrofittable antireflection coatings for T-rays,” Microw. Opt. Technol. Lett.49(9), 2267–2270 (2007). [CrossRef]
  14. Y. Chen, P. Han, and X. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett.94(4), 041106 (2009). [CrossRef]
  15. S. Biber, D. Schneiderbanger, L. Schmidt, M. Walther, B. Fischer, M. Schwarzer, and P. Jepsen, “Low loss silicon window material for submillimeter waves using micromachined artificial dielectrics for anti-reflection coating,” in Infrared and Millimeter Waves, 2004 and 12th International Conference on Terahertz Electronics, 2004. Conference Digest of the 2004 Joint 29th International Conference on pp. 105–106 (2004).
  16. J. H. Hertz and G. Minkwitz, “Brewster-Linsen und ihre Verwendung in optischen Resonatoren,” Opt. Acta (Lond.)16(5), 593–609 (1969). [CrossRef]
  17. R. Kingslake, Lens Design Fundamentals (Academic Press, 1978).
  18. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000). [CrossRef]
  19. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002). [CrossRef]
  20. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006). [CrossRef] [PubMed]
  21. Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express16(20), 15991–15998 (2008). [CrossRef] [PubMed]
  22. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Kor. Phys. Soc.49, 513–517 (2006).
  23. S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test.26(5), 614–618 (2007). [CrossRef]
  24. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys.42(6), 065415 (2009). [CrossRef]
  25. C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett.96(11), 111108 (2010). [CrossRef]
  26. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt.50(15), 2256–2262 (2011). [CrossRef] [PubMed]
  27. B. Scherger, S. Wietzke, M. Scheller, N. Vieweg, M. Wichmann, M. Koch, and K. Wiesauer, “Characterization of micro-powders for the fabrication of compression molded THz lenses,” J Infrared Millim. Terahz. Waves32(7), 943–951 (2011). [CrossRef]
  28. N. Vieweg, N. Krumbholz, T. Hasek, R. Wilk, V. Bartels, C. Keseberg, V. Pethukhov, M. Mikulics, L. Wetenkamp, and M. Koch, “Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes,” Proc. SPIE6616, 66163M (2007).
  29. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Opt. Express16(13), 9565–9570 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited