OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25173–25180

Quantum random bit generation using stimulated Raman scattering

Philip J. Bustard, Doug Moffatt, Rune Lausten, Guorong Wu, Ian A. Walmsley, and Benjamin J. Sussman  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25173-25180 (2011)
http://dx.doi.org/10.1364/OE.19.025173


View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Random number sequences are a critical resource in a wide variety of information systems, including applications in cryptography, simulation, and data sampling. We introduce a quantum random number generator based on the phase measurement of Stokes light generated by amplification of zero-point vacuum fluctuations using stimulated Raman scattering. This is an example of quantum noise amplification using the most noise-free process possible: near unitary quantum evolution. The use of phase offers robustness to classical pump noise and the ability to generate multiple bits per measurement. The Stokes light is generated with high intensity and as a result, fast detectors with high signal-to-noise ratios can be used for measurement, eliminating the need for single-photon sensitive devices. The demonstrated implementation uses optical phonons in bulk diamond.

© 2011 OSA

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(290.5910) Scattering : Scattering, stimulated Raman
(350.5030) Other areas of optics : Phase

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 26, 2011
Revised Manuscript: October 7, 2011
Manuscript Accepted: October 21, 2011
Published: November 23, 2011

Citation
Philip J. Bustard, Doug Moffatt, Rune Lausten, Guorong Wu, Ian A. Walmsley, and Benjamin J. Sussman, "Quantum random bit generation using stimulated Raman scattering," Opt. Express 19, 25173-25180 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25173


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Marsaglia, “On the randomness of pi and other decimal expansions,” InterStat5 (2005).
  2. Y. Shen, L. Tian, and H. Zou, “Practical quantum random number generator based on measuring the shot noise of vacuum states,” Phys. Rev. A81, 063814 (2010). [CrossRef]
  3. H. Schmidt, “Quantum mechanical random number generator,” J. Appl. Phys.41, 462–468 (1970). [CrossRef]
  4. B. Qi, Y.-M. Chi, H.-K. Lo, and L. Qian, “High-speed quantum random number generation by measuring phase noise of a single-mode laser,” Opt. Lett.35, 312–314 (2010). [CrossRef] [PubMed]
  5. H. Guo, W. Tang, Y. Liu, and W. Wei, “Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E81, 051137 (2010). [CrossRef]
  6. W. Wei and H. Guo, “Bias-free true random-number generator,” Opt. Lett.34, 1876–1878 (2009). [CrossRef] [PubMed]
  7. M. Ren, E. Wu, Y. Liang, Y. Jian, G. Wu, and H. Zeng, “Quantum random-number generator based on a photon-number-resolving detector,” Phys. Rev. A83, 023820 (2011). [CrossRef]
  8. M. Wahl, M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, and O. Benson, “An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements,” Appl. Phys. Lett.98, 171105 (2011). [CrossRef]
  9. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett.93, 031109 (2008). [CrossRef]
  10. S. Pironio, A. Acín, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature464, 1021–1024 (2010). [CrossRef] [PubMed]
  11. U. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory39, 733 –742 (1993). [CrossRef]
  12. A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron.6, 55 (1979). [CrossRef]
  13. M. G. Raymer and I. A. Walmsley, “Quantum coherence properties of stimulated Raman scattering,” Prog. Opt.28, 181 (1990). [CrossRef]
  14. M. G. Raymer, K. Rza̦żewski, and J. Mostowski, “Pulse-energy statistics in stimulated Raman scattering,” Opt. Lett.7, 71–73 (1982). [CrossRef] [PubMed]
  15. I. A. Walmsley and M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett.50, 962–965 (1983). [CrossRef]
  16. S. J. Kuo, D. T. Smithey, and M. G. Raymer, “Spatial interference of macroscopic light fields from independent Raman sources,” Phys. Rev. A43, 4083–4086 (1991). [CrossRef] [PubMed]
  17. D. T. Smithey, M. Belsley, K. Wedding, and M. G. Raymer, “Near quantum-limited phase memory in a Raman amplifier,” Phys. Rev. Lett.67, 2446–2449 (1991). [CrossRef] [PubMed]
  18. M. Belsley, D. T. Smithey, K. Wedding, and M. G. Raymer, “Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering,” Phys. Rev. A48, 1514 (1993). [CrossRef] [PubMed]
  19. J. Reintjes and M. Bashkansky, Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd ed. (McGraw-Hill Professional, 2010), chap. 15, p. 15.1.
  20. K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289 – 1295 (2010). [CrossRef]
  21. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24, 1980–1993 (1981). [CrossRef]
  22. J. von Neumann, “Various techniques used in connection with random digits,” Nat. Bur. Stand., Appl. Math Ser.12, 36–38 (1951).
  23. A. Juels, M. Jakobsson, E. Shriver, and B. Hillyer, “How to turn loaded dice into fair coins,” IEEE Trans. Inf. Theory46, 911 –921 (2000). [CrossRef]
  24. C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge Univ Pr, 2005).
  25. G. Marsaglia, “Diehard battery of tests of randomness,” http://www.stat.fsu.edu/pub/diehard/ .
  26. H. Haken, Encyclopedia of Physics, vol. 25 (Springer, 1970).
  27. W. Louisell, Quantum Statistical Properties of Radiation (John Wiley and Sons, Inc., New York, 1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited