OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25418–25425

Beam shaping of laser diode radiation by waveguides with arbitrary cladding geometry written with fs-laser radiation

Dennis Beckmann, Daniel Schnitzler, Dagmar Schaefer, Jens Gottmann, and Ingomar Kelbassa  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25418-25425 (2011)
http://dx.doi.org/10.1364/OE.19.025418


View Full Text Article

Enhanced HTML    Acrobat PDF (881 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Waveguides with arbitrary cross sections are written in the volume of Al2O3-crystals using tightly focused femtosecond laser radiation. Utilizing a scanning system with large numerical aperture, complex cladding geometries are realized with a precision around 0.5 µm and a scanning speed up to 100 mm/s. Individual beam and mode shaping of laser diode radiation is demonstrated by varying the design of the waveguide cladding. The influence of the writing parameters on the waveguide properties are investigated resulting in a numerical aperture of the waveguides in the range of 0.1. This direct laser writing technique enables optical devices which could possibly replace bulky beam shaping setups with an integrated solution.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3300) Lasers and laser optics : Laser beam shaping
(230.7370) Optical devices : Waveguides
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Optical Devices

History
Original Manuscript: August 29, 2011
Revised Manuscript: November 9, 2011
Manuscript Accepted: November 16, 2011
Published: November 28, 2011

Citation
Dennis Beckmann, Daniel Schnitzler, Dagmar Schaefer, Jens Gottmann, and Ingomar Kelbassa, "Beam shaping of laser diode radiation by waveguides with arbitrary cladding geometry written with fs-laser radiation," Opt. Express 19, 25418-25425 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-25-25418


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. I. Mukai, “510-515 nm InGaN-based green laser diodes on c-plane GaN substrate,” Appl. Phys. Express2, 062201 (2009). [CrossRef]
  2. A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss, “True green laser diodes at 524nm with 50mW continuous wave output power on c-plane GaN,” Appl. Phys. Express3(6), 061003 (2010). [CrossRef]
  3. Q. Xu, Y. Han, X. Zeng, and Y. An, “Hyperboloid cylinder-plane lens for shaping laser diode array beam,” Optik (Stuttg.)121(17), 1596–1599 (2010). [CrossRef]
  4. W. A. Clarkson and D. C. Hanna, “Two-mirror beam-shaping technique for high-power diode bars,” Opt. Lett.21(6), 375–377 (1996). [CrossRef] [PubMed]
  5. X. Zeng, C. Cao, and Y. An, “Asymmetrical prism for beam shaping of laser diode stacks,” Appl. Opt.44(26), 5408–5414 (2005). [CrossRef] [PubMed]
  6. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001). [CrossRef]
  7. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express17(25), 22417–22422 (2009). [CrossRef] [PubMed]
  8. G. Della Valle, R. Osellame, N. Chiodo, S. Taccheo, G. Cerullo, P. Laporta, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “C-band waveguide amplifier produced by femtosecond laser writing,” Opt. Express13(16), 5976–5982 (2005). [CrossRef] [PubMed]
  9. G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett.31(18), 2783–2785 (2006). [CrossRef] [PubMed]
  10. K. Sugioka, Y. Hanada, and K. Midorikawa, “3D integration of microcomponents in a single glass chip by femtosecond laser direct writing for biochemical analysis,” Appl. Surf. Sci.253(15), 6595–6598 (2007). [CrossRef]
  11. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  12. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett.85(7), 1122–1125 (2004). [CrossRef]
  13. H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express14(11), 4826–4834 (2006). [CrossRef] [PubMed]
  14. W. Watanabe, S. Sowa, and K. I. Itoh, “Waveguide writing in bulk PMMA by femtosecond laser pulses,” Proc. SPIE6108, 61080R, 61080R-6 (2006). [CrossRef]
  15. L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun.259(2), 626–630 (2006). [CrossRef]
  16. V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci.252(13), 4523–4526 (2006). [CrossRef]
  17. V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process.88(2), 239–242 (2007). [CrossRef]
  18. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B20(7), 1559–1567 (2003). [CrossRef]
  19. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009). [CrossRef]
  20. M. Will, J. Burghoff, S. Nolte, A. Tünnermann, F. Wunderlich, and K. Goetz, “Detailed investigations on femtosecond-induced modifcations in crystalline quartz for integrated optical applications,” Proc. SPIE5714, 261–270 (2005). [CrossRef]
  21. J. Gottmann, M. Hermans, M. Hörstmann-Jungemann, and D. Beckmann, “High speed and high precision fs-laser writing using a scanner with large numerical aperture,” J. Laser Micro/Nanoeng.4(3), 192–196 (2009). [CrossRef]
  22. J. Gottmann, D. Wortmann, and M. Hörstmann-Jungemann, “Fabrication of sub-wavelength surface ripples and in-volume nanostructures by fs-laser induced selective etching,” Appl. Surf. Sci.255(10), 5641–5646 (2009). [CrossRef]
  23. D. Beckmann, D. Esser, and J. Gottmann, “Characterization of channel waveguides in Pr:YLiF4 crystals fabricated by direct femtosecond laser writing,” Appl. Phys. B104(3), 619–624 (2011). [CrossRef]
  24. D. Wortmann, M. Ramme, and J. Gottmann, “Refractive index modification using fs-laser double pulses,” Opt. Express15(16), 10149–10153 (2007). [CrossRef] [PubMed]
  25. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic integration in fused silica: when fluidics, mechanics and optics meet in a single substrate,” in International Symposium on Optomechatronic Technologies, 2009. ISOT 2009 (2009), pp. 445–450.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited