OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25685–25695

Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system

Chuan Wang, Yong Zhang, and Ru Zhang  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25685-25695 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (769 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate an entanglement purification protocol with photon and electron hybrid entangled state resorting to quantum-dot spin and microcavity coupled system. The present system is used to construct the parity check gate which allows a quantum nonde-molition measurement on the spin parity. The cavity-spin coupled system provides a novel experimental platform of quantum information processing with photon and solid qubit.

© 2011 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5568) Quantum optics : Quantum cryptography
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: August 25, 2011
Revised Manuscript: October 25, 2011
Manuscript Accepted: October 27, 2011
Published: December 1, 2011

Chuan Wang, Yong Zhang, and Ru Zhang, "Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system," Opt. Express 19, 25685-25695 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef] [PubMed]
  2. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef] [PubMed]
  3. C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef] [PubMed]
  4. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  5. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef] [PubMed]
  6. B. Zhao, Z. B. Chen, Y. A. Chen, J. Schmiedmayer, and J. W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007). [CrossRef] [PubMed]
  7. N. Sangouard, C. Simon, H. Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011). [CrossRef]
  8. G. -L. Long and X. -S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
  9. F. -G. Deng, G. -L. Long, and X. -S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003). [CrossRef]
  10. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef] [PubMed]
  11. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef] [PubMed]
  12. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (2000). [CrossRef]
  13. J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001). [CrossRef] [PubMed]
  14. J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. Zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003). [CrossRef] [PubMed]
  15. C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002). [CrossRef] [PubMed]
  16. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
  17. L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008). [CrossRef]
  18. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
  19. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010). [CrossRef]
  20. M. Murao, M. B. Plenio, S. Popescu, and V. Vedral, “Multiparticle entanglement purification protocols,” and P. L. Knight, Phys. Rev. A 57, R4075–R4078 (1998). [CrossRef]
  21. Y. W. Cheong, S. W. Lee, J. Lee, and H. W. Lee, “Entanglement purification for high-dimensional multipartite systems,” Phys. Rev. A 76, 042314 (2007). [CrossRef]
  22. Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010). [CrossRef]
  23. F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011). [CrossRef]
  24. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. -P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010). [CrossRef] [PubMed]
  25. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009). [CrossRef]
  26. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008). [CrossRef]
  27. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,”, Phys. Rev. B 83, 115303 (2011). [CrossRef]
  28. A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,”, Phys. Rev. A 75, 053823 (2007). [CrossRef]
  29. P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006). [CrossRef] [PubMed]
  30. K. Azuma, N. Sota, R. Namiki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Optimal entanglement generation for efficient hybrid quantum repeaters,” Phys. Rev. A 80, 060303(R) (2009). [CrossRef]
  31. E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009). [CrossRef]
  32. J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, and A. S. Sørensen, “Hybrid long-distance entanglement distribution protocol,” Phys. Rev. Lett. 105, 160501 (2010). [CrossRef]
  33. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008). [CrossRef]
  34. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803(R) (2011). [CrossRef]
  35. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin Heidelberg, 1994).
  36. Y. -F. Xiao, S.K. Özdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Exp. 16, 21462–21475 (2008). [CrossRef]
  37. T. H. Stievater, X. Q. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,”, Phys. Rev. Lett. 87, 133603 (2001). [CrossRef] [PubMed]
  38. H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton rabi oscillation in a single quantum dot,” Phys. Rev. Lett. 87, 246401 (2001). [CrossRef] [PubMed]
  39. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008). [CrossRef] [PubMed]
  40. D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218–221 (2008). [CrossRef] [PubMed]
  41. A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Physics 5, 262–266 (2009). [CrossRef]
  42. X. D. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Optically controlled locking of the nuclear field via coherent dark-state spectroscopy,” Nature 459, 1105–1109 (2009). [CrossRef] [PubMed]
  43. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004). [CrossRef] [PubMed]
  44. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef] [PubMed]
  45. E. Peter, P. Senellart, D. Martrou, A. Lematre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95, 067401 (2005). [CrossRef] [PubMed]
  46. E. Abe, H. Wu, A. Ardavan, and J.J. L. Morton, “Electron spin ensemble strongly coupled to a three-dimensional microwave cavity,” App. Phys. Lett. 98, 251108 (2011). [CrossRef]
  47. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauβ, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” App. Phys. Lett. 90, 251109 (2007). [CrossRef]
  48. S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, and Y. Yamamoto, “Ultrafast optical spin echo for electron spins in semiconductors,” Phys. Rev. Lett. 102, 247601 (2009). [CrossRef] [PubMed]
  49. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photonics 4, 367–370 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited