OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 25 — Dec. 5, 2011
  • pp: 25773–25779

Effect of surface plasmon cross-talk on optical properties of closely packed nano-hole arrays

Fartash Vasefi, Mohamadreza Najiminaini, Bozena Kaminska, and Jeffrey J. L. Carson  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25773-25779 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1299 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The integration and miniaturization of nanostructure-based optical devices based on interaction with surface plasmons requires the fabrication of patterns of multiple nanostructures with tight spacing. The effect of surface plasmon energy interchange (cross-talk) across large grids of nanostructures and its effect on the optical characteristics of individual nanostructures have not been investigated. In this paper, we experimentally fabricated a large grid of individual nano-hole arrays of various hole diameter, hole spacing, and inter-array spacing. The spectral optical transmission of each nano-hole array was measured and the effect of inter-array spacing on the transmission spectra and resonance wavelength was determined.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

Original Manuscript: October 3, 2011
Revised Manuscript: November 21, 2011
Manuscript Accepted: November 22, 2011
Published: December 2, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Fartash Vasefi, Mohamadreza Najiminaini, Bozena Kaminska, and Jeffrey J. L. Carson, "Effect of surface plasmon cross-talk on optical properties of closely packed nano-hole arrays," Opt. Express 19, 25773-25779 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998). [CrossRef]
  2. A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007). [CrossRef] [PubMed]
  3. A. Lesuffleur, H. Im, N. C. Lindquist, K. S. Lim, and S.-H. Oh, “Plasmonic nanohole arrays for real-time multiplex biosensing,” Proc. SPIE 7035, 703504, 703504-10 (2008). [CrossRef]
  4. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008). [CrossRef] [PubMed]
  5. N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors,” Phys. Rev. B 76(15), 155109 (2007). [CrossRef]
  6. N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett. 91(25), 253105 (2007). [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  8. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  9. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  10. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010). [CrossRef] [PubMed]
  11. M. Najiminaini, F. Vasefi, C. K. Landrock, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis of extraordinary optical transmission through nano-hole arrays in a thick metal film,” Proc. SPIE 7577, 75770Z–75770Z-7 (2010). [CrossRef]
  12. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010). [CrossRef]
  13. F. Przybilla, A. Degiron, J. Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006). [CrossRef]
  14. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011). [CrossRef] [PubMed]
  15. T. W. Odom, H. Gao, J. M. McMahon, J. Henzie, and G. C. Schatz, “Plasmonic superlattices: Hierarchical subwavelength hole arrays,” Chem. Phys. Lett. 483(4–6), 187–192 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited