OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 26 — Dec. 12, 2011
  • pp: B825–B835

Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire

Hans Christian Hansen Mulvad, Evarist Palushani, Hao Hu, Hua Ji, Mads Lillieholm, Michael Galili, Anders T. Clausen, Minhao Pu, Kresten Yvind, Jørn M. Hvam, Palle Jeppesen, and Leif K. Oxenløwe  »View Author Affiliations


Optics Express, Vol. 19, Issue 26, pp. B825-B835 (2011)
http://dx.doi.org/10.1364/OE.19.00B825


View Full Text Article

Enhanced HTML    Acrobat PDF (1320 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate conversion from 64 × 10 Gbit/s optical time-division multiplexed (OTDM) data to dense wavelength division multiplexed (DWDM) data with 25 GHz spacing. The conversion is achieved by time-domain optical Fourier transformation (OFT) based on four-wave mixing (FWM) in a 3.6 mm long silicon nanowire. A total of 40 out of 64 tributaries of a 64 × 10 Gbit/s OTDM-DPSK data signal are simultaneously converted with a bit-error rate (BER) performance below the 2 × 10−3 FEC limit. Using a 50 m long highly nonlinear fiber (HNLF) for higher FWM conversion efficiency, 43 tributaries of a 64 × 10 Gbit/s OTDM-OOK data signal are converted with error-free performance (BER<10−9).

© 2011 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Waveguide and Opto-Electronic Devices

History
Original Manuscript: November 9, 2011
Revised Manuscript: November 30, 2011
Manuscript Accepted: December 1, 2011
Published: December 6, 2011

Virtual Issues
European Conference on Optical Communication 2011 (2011) Optics Express

Citation
Hans Christian Hansen Mulvad, Evarist Palushani, Hao Hu, Hua Ji, Mads Lillieholm, Michael Galili, Anders T. Clausen, Minhao Pu, Kresten Yvind, Jørn M. Hvam, Palle Jeppesen, and Leif K. Oxenløwe, "Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire," Opt. Express 19, B825-B835 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-26-B825


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk, and C. Dorrer, “107 Gb/s optical signal generation using electronic time-division multiplexing,” J. Lightwave Technol. 24(8), 3107–3113 (2006). [CrossRef]
  2. C. Schubert, R. H. Derksen, M. Möller, R. Ludwig, C.-J. Weiske, J. Lutz, S. Ferber, and C. Schmidt-Langhorst, “107 Gbit/s transmission using an integrated ETDM receiver,” European Conference on Optical Communication, ECOC 2006, Cannes, France, September 2006, paper Tu1.5.5 (2006).
  3. H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009). [CrossRef]
  4. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9.
  5. A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011). [CrossRef]
  6. R. S. Tucker and K. Hinton, “Energy consumption and energy density in optical and electronic signal processing,” IEEE Photon. J. 3(5), 821–833 (2011). [CrossRef]
  7. H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian H Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011). [CrossRef] [PubMed]
  8. S. Watanabe, F. Futami, R. Okabe, Y. Takita, S. Ferber, R. Ludwig, C. Schubert, C. Schmidt, and H. G. Weber, “160 Gbit/s optical 3R-regenerator in a fiber transmission experiment,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper PD16.
  9. K. Uchiyama, H. Takara, K. Mori, and T. Morioka, “160 Gbit/s all-optical time-division demultiplexing utilising modified multiple-output OTDM demultiplexer (MOXIC),” Electron. Lett. 38(20), 1190–1191 (2002). [CrossRef]
  10. C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, J. M. Chavez-Boggio, C. F. Marki, N. Alic, and S. Radic, “Optical demultiplexing of 320 Gb/s to 8×40 Gb/s in single parametric gate,” J. Lightwave Technol. 28(4), 434–442 (2010). [CrossRef]
  11. K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, “OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 18(10), 10282–10288 (2010). [CrossRef] [PubMed]
  12. H. N. Tan, Q. Nguyen-The, M. Matsuura, and N. Kishi, “Wavelength- and time-selective OTDM-to-WDM conversion with variable channel spacing in WDM grid using a reconfigurable multiwavelength pulse compressor,” European Conference on Optical Communication, ECOC 2011, Geneva, Switzerland, September 18–22, 2011, paper Tu.5.LeCervin.2 (2011).
  13. H. C. Hansen Mulvad, E. Palushani, M. Galili, J. Xu, H. Hu, A. Clausen, L. Oxenløwe, and P. Jeppesen, “OTDM-WDM conversion based on time-domain optical Fourier transformation with spectral compression,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThN2.
  14. E. Palushani, H.C.H. Mulvad, M. Galili, H. Hu, L.K. Oxenløwe, A. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Top Quantum Electron. PP(99), 1–8, DOI: (2011). [CrossRef]
  15. H. C. Hansen Mulvad, P. Guan, K. Kasai, T. Hirooka, and M. Nakazawa, “High-resolution 640 Gbit/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter,” European Conference on Optical Communication, ECOC 2010, Turin, Italy, September 2010, paper Mo.1.A.6 (2010).
  16. P. Guan, H. C. Hansen Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, “High time-resolution 640-Gb/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter,” IEEE Photon. Technol. Lett. 22(23), 1735–1737 (2010). [CrossRef]
  17. H. C. Hansen Mulvad, E. Palushani, H. Hu, H. Ji, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed optical serial-to-parallel data conversion in a silicon nanowire,” European Conference on Optical Communication, ECOC 2011, Geneva, Switzerland, September 18–22, 2011, postdeadline paper Th.13.A.2 (2011).
  18. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007). [CrossRef] [PubMed]
  19. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008). [CrossRef] [PubMed]
  20. H. Ji, M. Pu, H. Hu, M. Galili, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol. 29(4), 426–431 (2011). [CrossRef]
  21. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14(12), 630–632 (1989). [CrossRef] [PubMed]
  22. M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004). [CrossRef]
  23. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging—part I: system configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000). [CrossRef]
  24. K. G. Petrillo and M. A. Foster, “Scalable ultrahigh-speed optical transmultiplexer using a time lens,” Opt. Express 19(15), 14051–14059 (2011). [CrossRef] [PubMed]
  25. M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010). [CrossRef]
  26. M. Pu, H. Hu, M. Galili, H. Ji, C. Peucheret, L. Oxenløwe, K. Yvind, P. Jeppesen, and J. Hvam, “15-THz tunable wavelength conversion of picosecond pulses in a silicon waveguide,” IEEE Photon. Technol. Lett. 23(19), 1409–1411 (2011). [CrossRef]
  27. M. Jinno, “Effects of crosstalk and timing jitter on all-optical time-division demultiplexing using a nonlinear fiber Sagnac interferometer switch,” IEEE J. Quantum Electron. 30(12), 2842–2853 (1994). [CrossRef]
  28. F. Futami, Y. Takushima, and K. Kikuchi, “Generation of 10 GHz, 200 fs Fourier-transform-limited optical pulse train from modelocked semiconductor laser at 1.55 μm by pulse compression using dispersion-flattened fibre with normal group-velocity dispersion,” Electron. Lett. 34(22), 2129–2130 (1998). [CrossRef]
  29. C. G. Joergensen, T. Veng, L. Grüner-Nielsen, and M. Yan, “Dispersion flattened highly non-linear fiber,” 29th European Conference on Optical Communication, ECOC 2003, September 21–23, Rimini, Italy, paper We3.7.6 (2003).
  30. E. Palushani, L. K. Oxenløwe, M. Galili, H. C. Hansen Mulvad, A. T. Clausen, and P. Jeppesen, “Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing,” IEEE J. Quantum Electron. 45(11), 1317–1324 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited