OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 25854–25859

Thermoluminescence at a heating rate threshold in stressed fused silica

Philippe Bouchut, Frédéric Milesi, and Céline Da Maren  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 25854-25859 (2011)
http://dx.doi.org/10.1364/OE.19.025854


View Full Text Article

Enhanced HTML    Acrobat PDF (862 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The emissive properties of proton implanted fused silica surfaces have been studied by laser beam annealing. When submitted to a high thermal step from a focused CO2 laser, an intense near infra-red transient incandescence (TI) peak rises from stressed silica. The TI presents the characteristics of a thermoluminescent (TL) emission that occurs above a thermal rate threshold. We show that TI rises at the stress relaxation.

© 2011 OSA

OCIS Codes
(000.6850) General : Thermodynamics
(160.6030) Materials : Silica
(260.3800) Physical optics : Luminescence

ToC Category:
Materials

History
Original Manuscript: June 29, 2011
Revised Manuscript: July 25, 2011
Manuscript Accepted: July 26, 2011
Published: December 5, 2011

Citation
Philippe Bouchut, Frédéric Milesi, and Céline Da Maren, "Thermoluminescence at a heating rate threshold in stressed fused silica," Opt. Express 19, 25854-25859 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-25854


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Guzzi, G. Lucchini, M. Martini, F. Pio, A. Vedda, and E. Grilli, “Thermally stimulated luminescence above room temperature of amorphous SiO2,” Solid State Commun.75(2), 75–79 (1990). [CrossRef]
  2. S. Nagata, S. Yamamoto, K. Toh, B. Tsuchiya, N. Ohtsu, T. Shikama, and H. Naramoto, “Luminescence in SiO2 induced by MeV energy proton irradiation,” J. Nucl. Mater.329–333, 1507–1510 (2004). [CrossRef]
  3. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998). [CrossRef]
  4. P. Bouchut, D. Decruppe, and L. Delrive, “Fused silica thermal conductivity dispersion at high temperature,” J. Appl. Phys.96(6), 3221–3227 (2004). [CrossRef]
  5. E. P. EerNisse, “Compaction of ion-implanted fused silica,” J. Appl. Phys.45(1), 167–174 (1974). [CrossRef]
  6. J. L. Lawless and D. Lo, “Thermoluminescence for nonlinear heating profiles with application to laser heated emissions,” J. Appl. Phys.89(11), 6145–6152 (2001). [CrossRef]
  7. J. L. Lawless, S. K. Lam, and D. Lo, “Nondestructive in situ thermoluminescence using CO(2) laser heating,” Opt. Express10(6), 291–296 (2002). [PubMed]
  8. Y. I. Nissim, A. Lietoila, R. B. Gold, and J. F. Gibbons, “Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam,” J. Appl. Phys.51(1), 274–279 (1980). [CrossRef]
  9. J. Gasiot, P. Braunlich, and J. P. Fillard, “Laser heating in thermoluminescence dosimetry,” J. Appl. Phys.53(7), 5200–5209 (1982). [CrossRef]
  10. The 1000K temperature bound is obtained by the downscaling of the temperature determined in [4] for a larger beam waist and lower power.
  11. W. Primak, “Stress relaxation of vitreous silica on irradiation,” J. Appl. Phys.53(11), 7331–7342 (1982). [CrossRef]
  12. C. A. Volkert and A. Polman, “Radiation-enhanced plastic flow of covalent materials during ion irradiation,” Mater. Res. Soc. Symp. Proc.235, 3–14 (1992). [CrossRef]
  13. E. Snoeks, A. Polman, and C. A. Volkert, “Densification, anisotropic deformation, and plastic flow of SiO2 during MeV heavy ion irradiation,” Appl. Phys. Lett.65(19), 2487–2489 (1994). [CrossRef]
  14. A. Wootton, B. Thomas, and P. Harrowell, “Radiation-induced densification in amorphous silica: A computer simulation study,” J. Chem. Phys.115(7), 3336–3341 (2001). [CrossRef]
  15. L. Huang and J. Kieffer, “Anomalous thermomechanical properties and laser-induced densification of vitreous silica,” Appl. Phys. Lett.89(14), 141915 (2006). [CrossRef]
  16. M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys.88(10), 5534–5537 (2000). [CrossRef]
  17. A. Fontana, L. Orsingher, F. Rossi, and U. Buchenau, “Dynamics of a hydrogenated silica xerogel: A neutron scattering study,” Phys. Rev. B74(17), 172304 (2006). [CrossRef]
  18. M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, “Effects of compression on the vibrational modes of marginally jammed solids,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(5), 051306 (2005). [CrossRef] [PubMed]
  19. C. A. Angell, Y. Yue, L.-M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, “Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses,” J. Phys. Condens. Matter15(11), S1051–S1068 (2003). [CrossRef]
  20. C. A. Volkert, “Stress and plastic flow in silicon during amorphization by ion bombardment,” J. Appl. Phys.70(7), 3521–3527 (1991). [CrossRef]
  21. S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas.27(5–6), 625–661 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited