OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 25866–25872

Strained germanium thin film membrane on silicon substrate for optoelectronics

Donguk Nam, Devanand Sukhdeo, Arunanshu Roy, Krishna Balram, Szu-Lin Cheng, Kevin Chih-Yao Huang, Ze Yuan, Mark Brongersma, Yoshio Nishi, David Miller, and Krishna Saraswat  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 25866-25872 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1073 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work presents a novel method to introduce a sustainable biaxial tensile strain larger than 1% in a thin Ge membrane using a stressor layer integrated on a Si substrate. Raman spectroscopy confirms 1.13% strain and photoluminescence shows a direct band gap reduction of 100meV with enhanced light emission efficiency. Simulation results predict that a combination of 1.1% strain and heavy n+ doping reduces the required injected carrier density for population inversion by over a factor of 60. We also present the first highly strained Ge photodetector, showing an excellent responsivity well beyond 1.6um.

© 2011 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(250.0250) Optoelectronics : Optoelectronics
(310.6860) Thin films : Thin films, optical properties
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:

Original Manuscript: September 7, 2011
Revised Manuscript: October 12, 2011
Manuscript Accepted: October 16, 2011
Published: December 5, 2011

Donguk Nam, Devanand Sukhdeo, Arunanshu Roy, Krishna Balram, Szu-Lin Cheng, Kevin Chih-Yao Huang, Ze Yuan, Mark Brongersma, Yoshio Nishi, David Miller, and Krishna Saraswat, "Strained germanium thin film membrane on silicon substrate for optoelectronics," Opt. Express 19, 25866-25872 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Koo, H. Cho, P. Kapur, and K. C. Saraswat, “Performance comparisons between carbon nanotubes, optical, and Cu for future high-performance on-chip interconnect applications,” IEEE Trans. Electron. Dev. 54(12), 3206–3215 (2007). [CrossRef]
  2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000). [CrossRef]
  3. D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003). [CrossRef]
  4. T. Krishnamohan, D. Kim, T. V. Dinh, A. T. Pham, B. Meinerzhagen, C. Jungemann, and K. C. Saraswat, “Comparison of (001), (110) and (111) Uniaxial- and Biaxial- Strained-Ge and Strained-Si PMOS DGFETs for All Channel orientations: Mobility Enhancement, Drive Current, Delay and Off-State Leakage”, IEEE. IEDM. Tech. Digest., 899–892 (2008).
  5. T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010). [CrossRef]
  6. R. A. Soref and L. Friedman, “Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures,” Superlattices Microstruct. 14(2–3), 189 (1993). [CrossRef]
  7. M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80(4), 2234 (1996). [CrossRef]
  8. M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, “Band structure and optical gain of tensile-strained germanium based 30 band k·p formalism,” J. Appl. Phys. 107, 013710 (2010). [CrossRef]
  9. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009). [CrossRef] [PubMed]
  10. S. L. Cheng, J. Lu, G. Shambat, H. Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009). [CrossRef] [PubMed]
  11. P. H. Lim, S. Park, Y. Ishikawa, and K. Wada, “Enhanced direct bandgap emission in germanium by micromechanical strain engineering,” Opt. Express 17(18), 16358–16365 (2009). [CrossRef] [PubMed]
  12. M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96(4), 041909 (2010). [CrossRef]
  13. C. Boztug, F. Chen, J. Sanchez-Perez, F. Sudradjat, D. Paskiewicz, R.B. Jacobson, M. Lagally, and R. Paiella, “Direct-bandgap germanium active layers pumped above transparency based on tensiley strained nanomembranes,” CLEO:2011, PDPA2 (2011).
  14. Y. Huo, H. Lin, Y. Rong, M. Makarova, M. Li, R. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Efficient luminescence in highly tensile-strained germanium”, IEEE Int. Conf. on Group IV Photonics, 265–267 (2009).
  15. L. Nataraj, F. Xu, and S. G. Cloutier, “Direct-bandgap luminescence at room-temperature from highly-strained Germanium nanocrystals,” Opt. Express 18(7), 7085–7091 (2010). [CrossRef] [PubMed]
  16. J. R. Jain, D.-S. Ly-Gagnon, K. C. Balram, J. S. White, M. L. Brongersma, D. A. B. Miller, and R. T. Howe, “Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics”, ArXiv preprint 1105.0044 (2011).
  17. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010). [CrossRef]
  18. Y. Huo, R. Chen, H. Lin, T. I. Kamins, and J. S. Harris, “MBE growth of high Sn-percentage GeSn alloys with a composition-dependent absorption-edge shift,” 7th Int. Conf. on Group IV Photonics Beijing, China (2010).
  19. E. Kasper, M. Oehme, T. Aguirov, J. Werner, M. Kittler, and J. Schulze, “Room temperature direct band gap emission from Ge p-i-n heterojunction photodiodes”, 7th Int. Conf. on Group IV Photonics Beijing, China (2010).
  20. T. B. Boykin, N. Kharche, and G. Klimeck, “Brillouin-zone unfolding of perfect supercells having nonequivalent primitive cells illustrated with a Si/Ge tight-binding parameterization,” Phys. Rev. B 76(3), 035310 (2007). [CrossRef]
  21. T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, “Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory,” Phys. Rev. B 66(12), 125207 (2002). [CrossRef]
  22. A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, “Fabrication of high-quality p-MOSFET in Ge grown heteroepitaxially on Si,” IEEE Electron Device Lett. 26(5), 311–313 (2005). [CrossRef]
  23. Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C. Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate,” J. Appl. Phys. 98(1), 013501 (2005). [CrossRef]
  24. J. T. L. Thong, W. K. Choi, and C. W. Chong, “TMAH etching of silicon and the interaction of etching parameters,” Sens. Actuators A Phys. 63(3), 243–249 (1997). [CrossRef]
  25. D. W. Hoffman and J. A. Thornton, “The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures,” Thin Solid Films 45(2), 387–396 (1977). [CrossRef]
  26. Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, “Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metal-organic chemical vapor deposition,” J. Appl. Phys. 104(8), 084518 (2008). [CrossRef]
  27. J. Kim, S. W. Bedell, and D. K. Sadana, “Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus,” Appl. Phys. Lett. 98(8), 082112 (2011). [CrossRef]
  28. G. Thareja, S. Chopra, B. Adams, Y. Kim, S. Moffatt, K. Saraswat, and Y. Nishi, “High n-type antimony dopant activation in germanium using laser annealing for n+/p junction diode,” IEEE Electron Device Lett. 32(7), 838–840 (2011). [CrossRef]
  29. Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011). [CrossRef]
  30. G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(30), 3293–3297 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited