OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 25911–25917

THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions

Roman J. B. Dietz, Marina Gerhard, Dennis Stanze, Martin Koch, Bernd Sartorius, and Martin Schell  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 25911-25917 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (733 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present first results on photoconductive THz emitters for 1.55µm excitation. The emitters are based on MBE grown In0.53Ga0.47As/In0.52Al0.48As multilayer heterostructures (MLHS) with high carrier mobility. The high mobility is achieved by spatial separation of photoconductive and trapping regions. Photoconductive antennas made of these MLHS are evaluated as THz emitters in a THz time domain spectrometer (THz TDS). The high carrier mobility and effective absorption significantly increases the optical-to-THz conversion efficiency with THz bandwidth in excess of 3 THz.

© 2011 OSA

OCIS Codes
(040.5150) Detectors : Photoconductivity
(160.5140) Materials : Photoconductive materials
(260.5150) Physical optics : Photoconductivity
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: October 3, 2011
Revised Manuscript: November 7, 2011
Manuscript Accepted: November 16, 2011
Published: December 5, 2011

Roman J. B. Dietz, Marina Gerhard, Dennis Stanze, Martin Koch, Bernd Sartorius, and Martin Schell, "THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions," Opt. Express 19, 25911-25917 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011), http://onlinelibrary.wiley.com/doi/10.1002/lpor.201000011/abstract . [CrossRef]
  2. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 . [CrossRef]
  3. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988), http://dx.doi.org/10.1109/3.121 . [CrossRef]
  4. A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett. 58(14), 1512–1514 (1991), http://link.aip.org/link/doi/10.1063/1.105162 . [CrossRef]
  5. H. M. Heiliger, M. Vosseburger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69(19), 2903–2905 (1996), http://link.aip.org/link/doi/10.1063/1.117357 . [CrossRef]
  6. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997), http://link.aip.org/link/doi/10.1063/1.118337 . [CrossRef]
  7. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ao-36-30-7853 . [CrossRef] [PubMed]
  8. K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Eur. Opt. Soc. Rapid. Publ. 4, 09001 (2009), http:/www.jeos.org/index.php/jeos_rp/article/view/09001 . [CrossRef]
  9. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-24-19695 . [CrossRef] [PubMed]
  10. K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(3), 354–356 (1997), http://link.aip.org/link/doi/10.1063/1.118412 . [CrossRef]
  11. M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:. [CrossRef] [PubMed]
  12. C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000), http://link.aip.org/link/doi/10.1063/1.126690 . [CrossRef]
  13. J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005), http://link.aip.org/link/doi/10.1063/1.2149977 . [CrossRef]
  14. K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis, and S. Marcinkevičius, “GaBiAs: A material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88(20), 201112 (2006), http://link.aip.org/link/doi/10.1063/1.2205180 . [CrossRef]
  15. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005), http://link.aip.org/link/doi/10.1063/1.1861495 . [CrossRef]
  16. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett. 86(16), 163504 (2005), http://link.aip.org/link/doi/10.1063/1.1901817 . [CrossRef]
  17. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007), http://link.aip.org/link/doi/10.1063/1.2712503 . [CrossRef]
  18. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 91(1), 011102 (2007), http://link.aip.org/link/doi/10.1063/1.2754370 . [CrossRef]
  19. R. Wilk, M. Mikulics, K. Biermann, H. Künzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz Time-Domain Spectrometer Based on LT-InGaAs Photoconductive Antennas Exited by a 1.55 μm Fibre Laser, ” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThR2, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4452856&isnumber=4452320 .
  20. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-13-9565 . [CrossRef] [PubMed]
  21. A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 . [CrossRef]
  22. C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010), http://link.aip.org/link/doi/10.1063/1.3427191 . [CrossRef]
  23. O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98(12), 121107 (2011), http://link.aip.org/link/doi/10.1063/1.3571289 . [CrossRef]
  24. J. Oh, P. Bhattacharya, Y. Chen, O. Aina, and M. Mattingly, “The dependence of the electrical and optical properties of molecular beam epitaxial In0.52Al0.48As on growth parameters: Interplay of surface kinetics and thermodynamics,” J. Electron. Mater. 19(5), 435–441 (1990), http://www.springerlink.com/content/010544084t85h872/ . [CrossRef]
  25. H. Hoenow, H.-G. Bach, J. Böttcher, F. Gueissaz, H. Künzel, F. Scheffer, and C. Schramm, “Deep level Analysis of Si Doped MBE Grown AlInAs Layers, ” Proc. 4th Int. Conf. InP and Rel. Mater., 136–139 (1992), http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00235658 .
  26. J. S. Weiner, D. S. Chemla, D. A. B. Miller, T. H. Wood, D. Sivco, and A. Y. Cho, “Room temperature excitons in 1.6µm band-gap GaInAs/AlInAs quantum wells,” Appl. Phys. Lett. 46(7), 619–621 (1985), http://link.aip.org/link/doi/10.1063/1.95504 . [CrossRef]
  27. H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 61(11), 1347–1349 (1992), http://link.aip.org/link/doi/10.1063/1.107587 . [CrossRef]
  28. H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2296 . [CrossRef] [PubMed]
  29. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=josab-13-11-2424 . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited