OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 25918–25924

Picosecond all-fiber cascaded Raman shifter pumped by an amplified gain switched laser diode

Hakan Sayinc, Katharina Hausmann, Uwe Morgner, Jörg Neumann, and Dietmar Kracht  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 25918-25924 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1119 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated an all-fiber picosecond Raman shifter, pumped by an amplified gain switched laser diode in detail. The Raman shifter emitted ps pulses simultaneously at 8 different central wavelengths in the region between 1.06 µm and 1.59 µm.

© 2011 OSA

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.4510) Fiber optics and optical communications : Optical communications
(140.3510) Lasers and laser optics : Lasers, fiber
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 3, 2011
Revised Manuscript: November 9, 2011
Manuscript Accepted: November 11, 2011
Published: December 5, 2011

Hakan Sayinc, Katharina Hausmann, Uwe Morgner, Jörg Neumann, and Dietmar Kracht, "Picosecond all-fiber cascaded Raman shifter pumped by an amplified gain switched laser diode," Opt. Express 19, 25918-25924 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Onodera, H. Ito, and H. Inaba, “Generation and control of bandwidth-limited single-mode picosecond optical pulses by strong RF modulation of a distributed feedback In GaAs diode laser,” IEEE J. Quantum Electron. 21(6), 568–575 (1985). [CrossRef]
  2. K. Kamite, H. Ishikawa, and H. Imai, “Single-longitudinal-mode operation of DFB-lasers in gain-switched operating conditions,” Electron. Lett. 24(15), 933–934 (1988). [CrossRef]
  3. H. Ohta and T. Oki, “310-Femtosecond optical pulse generation from a gain-switched laser diode using soliton compression,” Jpn. J. Appl. Phys. 33(Part 2, No. 11B), L1604–L1606 (1994). [CrossRef]
  4. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006). [CrossRef]
  5. Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999). [CrossRef]
  6. S. Kanzelmeyer, H. Sayinc, T. Theeg, M. Frede, J. Neumann, and D. Kracht, “All-fiber based amplification of 40 ps pulses from a gain-switched laser diode,” Opt. Express 19(3), 1854–1859 (2011). [CrossRef] [PubMed]
  7. F. Balembois, M. Gaignet, P. Georges, A. Brun, N. Stelmakh, and J. M. Lourtioz, “Tunable picosecond blue and ultraviolet pulses from a diode-pumped laser system seeded by a gain-switched laser diode,” Appl. Opt. 37(21), 4876–4880 (1998). [CrossRef] [PubMed]
  8. K. Lauritsen, S. Riecke, M. Langkopf, D. Klemme, C. Kaleva, C. Pallassis, S. McNeil, and R. Erdmann, “Fiber amplified and frequency doubled diode lasers as a highly flexible pulse source at 532nm,” Proc. SPIE Vol. 68721, 68711L (2008).
  9. A. Fragemann, V. Pasiskevicius, and F. Laurell, “Optical parametric amplification of a gain-switched picosecond laser diode,” Opt. Express 13(17), 6482–6489 (2005). [CrossRef] [PubMed]
  10. Y. T. Cho, M. Alahbabi, M. J. Gunning, and T. P. Newson, “50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification,” Opt. Lett. 28(18), 1651–1653 (2003). [CrossRef] [PubMed]
  11. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005). [CrossRef]
  12. T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993). [CrossRef]
  13. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002). [CrossRef]
  14. S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral lidar: measurement of spectral backscatter intensity with a supercontinuum laser scource,” IEEE Geosci. Remote Sens. Lett. 4(2), 211–215 (2007). [CrossRef]
  15. K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express 18(6), 5426–5432 (2010). [CrossRef] [PubMed]
  16. M. Kumar, C. Xia, X. Ma, V. V. Alexander, M. N. Islam, F. L. Terry, C. C. Aleksoff, A. Klooster, and D. Davidson, “Power adjustable visible supercontinuum generation using amplified nanosecond gain-switched laser diode,” Opt. Express 16(9), 6194–6201 (2008). [CrossRef] [PubMed]
  17. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28(19), 1820–1822 (2003). [CrossRef] [PubMed]
  18. D. Lin, S. U. Alam, P. S. Teh, K. K. Chen, and D. J. Richardson, “Selective excitation of multiple Raman Stokes wavelengths (green-yellow-red) using shaped multi-step pulses from an all-fiber PM MOPA,” Opt. Express 19(3), 2085–2092 (2011). [CrossRef] [PubMed]
  19. M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express 19(16), 15389–15396 (2011). [CrossRef] [PubMed]
  20. D. A. Grukh, A. E. Levchenko, A. S. Kurkov, and V. M. Pamaranov, “Self-Q-switched ytterbium-doped fibre laser with intracavity spectral conversion,” Quantum Electron. 35(5), 442–444 (2005). [CrossRef]
  21. F. Vanholsbeeck, S. Coen, P. Emplit, C. Martinelli, and T. Sylvestre, “Cascaded Raman generation in optical fibers: influence of chromatic dispersion and Rayleigh backscattering,” Opt. Lett. 29(9), 998–1000 (2004). [CrossRef] [PubMed]
  22. R. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1(4), 652–657 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited