OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 25969–25980

Multi-wavelength elemental contrast absorption imaging

Mac B. Luu, Chanh Q. Tran, Benedicta Arhatari, Eugeniu Balaur, Nirgel Kirby, Stephen Mudie, Bao T. Pham, Nghia T. Vo, Corey T. Putkunz, Francesco De Carlo, and Andrew G. Peele  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 25969-25980 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1780 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report experimental demonstrations of a quantitative technique for elemental mapping. The technique operates in full-field imaging mode and uses three intensity measurements at energies across an absorption edge of an element of interest to obtain its elemental distribution. The experimental results show that the technique can overcome some limitations in the conventional Absorption Edge Contrast Imaging. The technique allows for an accurate determination of the elemental distribution in a compound sample even at a low level of percentage composition. It is also robust to the choice of energy intervals.

© 2011 OSA

OCIS Codes
(340.0340) X-ray optics : X-ray optics
(340.6720) X-ray optics : Synchrotron radiation
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

Original Manuscript: August 5, 2011
Revised Manuscript: November 3, 2011
Manuscript Accepted: November 16, 2011
Published: December 6, 2011

Mac B. Luu, Chanh Q. Tran, Benedicta Arhatari, Eugeniu Balaur, Nirgel Kirby, Stephen Mudie, Bao T. Pham, Nghia T. Vo, Corey T. Putkunz, Francesco De Carlo, and Andrew G. Peele, "Multi-wavelength elemental contrast absorption imaging," Opt. Express 19, 25969-25980 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Gurrappa, D. Manova, J. Gerlach, S. Mandl, and B. Rauschenbach, “Influence of nitrogen implantation on the high temperature oxidation of titanium-base alloys,” Surf. Coat. Technol. 201, 3536–3546 (2006). [CrossRef]
  2. J. S. Hou, J. T. Guo, G. X. Yang, L. Z. Zhou, X. Z. Qin, and H. Q. Ye, “The microstructural instability of a hot corrosion resistant superalloy during long-term exposure,” Mater. Sci. Eng., A 498, 349–358 (2008). [CrossRef]
  3. A. S. Yen, R. Gellert, C. Schroder, R. V. Morris, J. F. Bell, A. T. Knudson, B. C. Clark, D. W. Ming, J. A. Crisp, R. E. Arvidson, D. Blaney, J. Bruckner, P. R. Christensen, D. J. DesMarais, P. A. de Souza, T. E. Economou, A. Ghosh, B. C. Hahn, K. E. Herkenhoff, L. A. Haskin, J. A. Hurowitz, B. L. Joliff, J. R. Johnson, G. Klingelhofer, M. B. Madsen, S. M. McLennan, H. Y. McSween, L. Richter, R. Rieder, D. Rodionov, L. Soderblom, S. W. Squyres, N. J. Tosca, A. Wang, M. Wyatt, and J. Zipfel, “An integrated view of the chemistry and mineralogy of martian soils,” Nature 436, 49–54 (2005). [CrossRef] [PubMed]
  4. R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham, and C. M. Lieber, “Nanotechnology high-speed integrated nanowire circuits,” Nature 434, 1085–1085 (2005). [CrossRef] [PubMed]
  5. H. Rarback, F. Cinotti, C. Jacobsen, J. Kenney, J. Kirz, and R. Rosser, “Elemental analysis using differential absorption techniques,” Biol. Trace Elem. Res. 13, 103–113 (1987). [CrossRef]
  6. S. Laville, L. A. Gizzi, P. Koster, and L. Labate, “Differential absorption imaging for elemental analysis of thin samples using a soft laser-plasma x-ray source,” Nucl. Instrum. Methods Phys. Res. A 538, 738–746 (2005). [CrossRef]
  7. C. Q. Tran, “Multiwavelength elemental contrast phase imaging by the use of dispersion effects,” Phys. Rev. A 78, 013839 (2008). [CrossRef]
  8. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400, 342–344 (1999). [CrossRef]
  9. B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat Phys 4, 394–398 (2008). [CrossRef]
  10. J. N. Clark, G. J. Williams, H. M. Quiney, L. Whitehead, M. D. de Jonge, E. Hanssen, M. Altissimo, K. A. Nugent, and A. G. Peele, “Quantitative phase measurement in coherent diffraction imaging,” Opt. Express 16, 3342–3348 (2008). [CrossRef] [PubMed]
  11. C. T. Putkunz, J. N. Clark, D. J. Vine, G. J. Williams, M. A. Pfeifer, E. Balaur, I. McNulty, K. A. Nugent, and A. G. Peele, “Phase-diverse coherent diffractive imaging: High sensitivity with low dose,” Phys. Rev. Lett. 106, 013903 (2011). [CrossRef] [PubMed]
  12. C. T. Putkunz, M. A. Pfeifer, A. G. Peele, G. J. Williams, H. M. Quiney, B. Abbey, K. A. Nugent, and I. McNulty, “Fresnel coherent diffraction tomography,” Opt. Express 18, 11746–11753 (2010). [CrossRef] [PubMed]
  13. H. M. Quiney, K. A. Nugent, and A. G. Peele, “Iterative image reconstruction algorithms using wave-front intensity and phase variation,” Opt. Lett. 30, 1638–1640 (2005). [CrossRef] [PubMed]
  14. G. J. Williams, H. M. Quiney, B. B. Dhal, C. Q. Tran, K. A. Nugent, A. G. Peele, D. Paterson, and M. D. d. Jonge, “Fresnel coherent diffractive imaging,” Phys. Rev. Lett. 97, 025506 (2006). [CrossRef] [PubMed]
  15. B. Arhatari, K. Hannah, E. Balaur, and A. Peele, “Phase imaging using a polychromatic x-ray laboratory source,” Opt. Express 16, 19950–19956 (2008). [CrossRef] [PubMed]
  16. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002). [CrossRef] [PubMed]
  17. L. Turner, B. Dhal, J. Hayes, A. Mancuso, K. Nugent, D. Paterson, R. Scholten, C. Tran, and A. Peele, “X-ray phase imaging: Demonstration of extended conditions for homogeneous objects,” Opt. Express 12, 2960–2965 (2004). [CrossRef] [PubMed]
  18. M. B. Luu, B. D. Arhatari, C. Q. Tran, E. Balaur, B. T. Pham, N. T. Vo, B. Chen, C. T. Putkunz, N. Kirby, S. Mudie, and A. G. Peele, “Quantitative phase imaging with polychromatic x-ray sources,” Opt. Express 19, 8127–8134 (2011). [CrossRef] [PubMed]
  19. C. T. Chantler, “Theoretical form factor, attenuation, and scattering tabulation for z=1–92 from e=1–10 ev to e=0.4–1.0 mev,” J. Phys. Chem. Ref. Data 24, 71–642 (1995). [CrossRef]
  20. D. Cookson, N. Kirby, R. Knott, M. Lee, and D. Schultz, “Strategies for data collection and calibration with a pinhole-geometry saxs instrument on a synchrotron beamline,” J. Synchrotron Radiat. 13, 440–444 (2006). [CrossRef] [PubMed]
  21. C. T. Chantler, C. Q. Tran, Z. Barnea, D. Paterson, D. J. Cookson, and D. X. Balaic, “Measurement of the x-ray mass attenuation coefficient of copper using 8.85̆20 kev synchrotron radiation,” Phys. Rev. A 64, 062506 (2001). [CrossRef]
  22. J. L. Glover, C. T. Chantler, Z. Barnea, N. A. Rae, C. Q. Tran, D. C. Creagh, D. Paterson, and B. B. Dhal, “Measurements of the x-ray mass-attenuation coefficient and imaginary component of the form factor of copper,” Phys. Rev. A 78, 052902 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited