OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26000–26005

Formation of micro protrusive lens arrays atop poly(methyl methacrylate)

Yong Zhao, Chang Chun Wang, Wei Min Huang, Hendra Purnawali, and Lin An  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26000-26005 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3369 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Different sized/shaped micro protrusive lens arrays atop poly(methyl methacrylate) can be fabricated by a simple two-step method, i.e., indentation followed by immersion in ethanol. Profile and projection of obtained microlenses were characterized. Thermal stability of microlenses was examined at 25°C and 60°C. This work demonstrates a cost effective approach for massive fabrication of microlens array with high reliability.

© 2011 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.3630) Optical design and fabrication : Lenses
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: October 12, 2011
Revised Manuscript: November 6, 2011
Manuscript Accepted: November 6, 2011
Published: December 6, 2011

Yong Zhao, Chang Chun Wang, Wei Min Huang, Hendra Purnawali, and Lin An, "Formation of micro protrusive lens arrays atop poly(methyl methacrylate)," Opt. Express 19, 26000-26005 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. P. D. Shieh, Y. P. Huang, and K. W. Chien, “Micro-optics for liquid crystal displays application,” J. Disp. Technol. 1(1), 62–76 (2005). [CrossRef]
  2. G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Shack Hartmann wave-front measurement with a large F-number plastic microlens array,” Appl. Opt. 35(1), 188–192 (1996). [CrossRef] [PubMed]
  3. D. A. Baillie and J. E. Gendler, “Zero-space microlenses for CMOS image sensors: Optical modeling and lithographic process development,” Proc. SPIE 5377, 953–959 (2004). [CrossRef]
  4. H. Toshiyoshi, G. D. J. Su, J. LaCosse, and M. C. Wu, “A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process,” J. Lightwave Technol. 21(7), 1700–1708 (2003). [CrossRef]
  5. B. K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10(6-7), 531–535 (2004). [CrossRef]
  6. D. Y. Zhang, N. Justis, and Y. H. Lo, “Integrated fluidic adaptive zoom lens,” Opt. Lett. 29(24), 2855–2857 (2004). [CrossRef] [PubMed]
  7. S. H. Cho, F. S. Tsai, W. Qiao, N. H. Kim, and Y. H. Lo, “Fabrication of aspherical polymer lenses using a tunable liquid-filled mold,” Opt. Lett. 34(5), 605–607 (2009). [CrossRef] [PubMed]
  8. R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling, and N. Peyghambarian, “Adjustable fluidic lenses for ophthalmic corrections,” Opt. Lett. 34(4), 515–517 (2009). [CrossRef] [PubMed]
  9. A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005). [CrossRef] [PubMed]
  10. C. N. Hu, H. T. Hsieh, and G. D. J. Su, “Fabrication of microlens arrays by a rolling process with soft polymethylsiloxane molds,” J. Micromech. Microeng. 21(6), 065013 (2011). [CrossRef]
  11. H. Yabu and M. Shimomura, “Simple fabrication of micro lens arrays,” Langmuir 21(5), 1709–1711 (2005). [CrossRef] [PubMed]
  12. V. J. Cadarso, J. Perera-Núñez, L. Jacot-Descombes, K. Pfeiffer, U. Ostrzinski, A. Voigt, A. Llobera, G. Grützer, and J. Brugger, “Microlenses with defined contour shapes,” Opt. Express 19(19), 18665–18670 (2011). [CrossRef] [PubMed]
  13. J. P. Lu, W. K. Huang, and F. C. Chen, “Self-positioning microlens arrays prepared using ink-jet printing,” Opt. Eng. 48(7), 073606 (2009). [CrossRef]
  14. A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array,” Opt. Express 17(22), 19908–19918 (2009). [CrossRef] [PubMed]
  15. J. M. Park, Z. Gan, W. Y. Leung, R. Liu, Z. Ye, K. Constant, J. Shinar, R. Shinar, and K. M. Ho, “Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction,” Opt. Express 19(S4Suppl 4), A786–A792 (2011). [CrossRef] [PubMed]
  16. Y. J. Lee, Y. W. Kim, Y. K. Kim, C. J. Yu, J. S. Gwag, and J. H. Kim, “Microlens array fabricated using electrohydrodynamic instability and surface properties,” Opt. Express 19(11), 10673–10678 (2011). [CrossRef] [PubMed]
  17. H. Ren, D. Ren, and S. T. Wu, “A new method for fabricating high density and large aperture ratio liquid microlens array,” Opt. Express 17(26), 24183–24188 (2009). [CrossRef] [PubMed]
  18. F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys., A Mater. Sci. Process. 68(6), 709–713 (1999). [CrossRef]
  19. L. Li and A. Y. Yi, “Development of a 3D artificial compound eye,” Opt. Express 18(17), 18125–18137 (2010). [CrossRef] [PubMed]
  20. N. Liu, Q. Xie, W. M. Huang, S. J. Phee, and N. Q. Guo, “Formation of micro protrusion arrays atop shape memory polymer,” J. Micromech. Microeng. 18(2), 027001 (2008). [CrossRef]
  21. Y. Zhao, W. M. Huang, and Y. Q. Fu, “Formation of micro/nano-scale wrinkling patterns atop shape memory polymers,” J. Micromech. Microeng. 21(6), 067007 (2011). [CrossRef]
  22. J. P. Harmon, S. Lee, and J. C. M. Li, “Anisotropic methanol transport in PMMA after mechanical deformation,” Polymer (Guildf.) 29(7), 1221–1226 (1988). [CrossRef]
  23. Y. Zhao, C. C. Wang, W. M. Huang, and H. Purnawali, “Buckling of poly(methyl methacrylate) in stimulus-responsive shape recovery,” Appl. Phys. Lett. 99(13), 131911 (2011). [CrossRef]
  24. W. M. Huang, J. F. Su, M. H. Hong, and B. Yang, “Pile-up and sink-in in micro-indentation of a NiTi shape-memory alloy,” Scr. Mater. 53(9), 1055–1057 (2005). [CrossRef]
  25. J. T. Wu and S. Y. Yang, “A gasbag-roller-assisted UV imprinting technique for fabrication of a microlens array on a PMMA substrate,” J. Micromech. Microeng. 20(8), 085038 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited