OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26011–26016

Entangled photon polarimetry

Joseph B. Altepeter, Neal N. Oza, Milja Medić, Evan R. Jeffrey, and Prem Kumar  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26011-26016 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We construct an entangled photon polarimeter capable of monitoring a two-qubit quantum state in real time. Using this polarimeter, we record a nine frames-per-second video of a two-photon state’s transition from separability to entanglement.

© 2011 OSA

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: August 31, 2011
Revised Manuscript: November 13, 2011
Manuscript Accepted: November 14, 2011
Published: December 6, 2011

Joseph B. Altepeter, Neal N. Oza, Milja Medić, Evan R. Jeffrey, and Prem Kumar, "Entangled photon polarimetry," Opt. Express 19, 26011-26016 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Nielsen and I. Chuang, Quantum computation and quantum information (Cambridge Univ. Press2000).
  2. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Yanhua Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef] [PubMed]
  3. J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Exp. 13, 8951–8959 (2005). [CrossRef]
  4. C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett. 94, 150501 (2005). [CrossRef] [PubMed]
  5. M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, “Long-distance free-space distribution of quantum entanglement,” Science 301, 5633 (2003). [CrossRef]
  6. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005). [CrossRef] [PubMed]
  7. J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 043836 (2007). [CrossRef]
  8. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Exp. 165721–5727 (2008). [CrossRef]
  9. M. A. Hall, J. B. Altepeter, and P. Kumar, “Drop-in compatible entanglement for optical-fiber networks,” Opt. Exp. 17, 14558–14566 (2009). [CrossRef]
  10. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett. 35, 802–804 (2010). [CrossRef] [PubMed]
  11. U. Leonhardt, “Quantum-state tomography and discrete Wigner function,” Phys. Rev. Lett. 74, 4101–4105 (1995). [CrossRef] [PubMed]
  12. K. Banaszek, G. M. DAriano, M. G. A. Paris, and M. F. Sacchi, “Maximum-likelihood estimation of the density matrix,” Phys. Rev. A 61, 010304(R) (1999). [CrossRef]
  13. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001). [CrossRef]
  14. R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro, “Qudit quantum-state tomography,” Phys. Rev. A 66, 012303 (2002). [CrossRef]
  15. J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Photonic state tomography,” Adv. At., Mol., Opt. Phys. 52, 105–159 (2005).
  16. M. S. Kaznady and D. F. V. James, “Numerical strategies for quantum tomography: Alternatives to full optimization,” Phys. Rev. A 79, 022109 (2009). [CrossRef]
  17. R. Jozsa, “Fidelity for mixed quantum states,” J. of Mod. Opt. 41, 2315–2323 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Supplementary Material

» Media 1: MPG (3671 KB)     
» Media 2: MPG (715 KB)     
» Media 3: MPG (1295 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited