OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26161–26173

Bilinear and bicubic interpolation methods for division of focal plane polarimeters

Shengkui Gao and Viktor Gruev  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26161-26173 (2011)
http://dx.doi.org/10.1364/OE.19.026161


View Full Text Article

Acrobat PDF (1226 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents bilinear and bicubic interpolation methods tailored for the division of focal plane polarization imaging sensor. The interpolation methods are targeted for a 1-Mega pixel polarization imaging sensor operating in the visible spectrum. The five interpolation methods considered in this paper are: bilinear, weighted bilinear, bicubic spline, an approximated bicubic spline and a bicubic interpolation method. The modulation transfer function analysis is applied to the different interpolation methods, and test images as well as numerical error analyses are also presented. Based on the comparison results, the full frame bicubic spline interpolation achieves the best performance for polarization images.

© 2011 OSA

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 27, 2011
Revised Manuscript: November 20, 2011
Manuscript Accepted: November 22, 2011
Published: December 7, 2011

Citation
Shengkui Gao and Viktor Gruev, "Bilinear and bicubic interpolation methods for division of focal plane polarimeters," Opt. Express 19, 26161-26173 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26161


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Walraven, “Polarization imagery,” Opt. Eng.20, 14–18 (1981).
  2. J. E. Solomon, “Polarization imaging,” Appl. Opt.20(9), 1537–1544 (1981). [CrossRef] [PubMed]
  3. R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett.10(7), 309–311 (1985). [CrossRef] [PubMed]
  4. C. A. Farlow, D. B. Chenault, K. D. Spradley, M. G. Gulley, M. W. Jones, and C. M. Persons, “Imaging polarimeter development and application,” Proc. SPIE4819, 118–125 (2001).
  5. J. D. Barter, P. H. Y. Lee, and H. R. Thompson, “Stokes parameter imaging of scattering surfaces,” Proc. SPIE3121, 314–320 (1997). [CrossRef]
  6. M. W. Kudenov, L. J. Pezzaniti, and G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng.48(6), 063201 (2009). [CrossRef]
  7. M. E. Roche, D. B. Chenault, J. P. Vaden, A. Lompado, D. Voelz, T. J. Schulz, R. N. Givens, and V. L. Gamiz, “Synthetic aperture imaging polarimeter,” Proc. SPIE7672, 767206, 767206-12 (2010). [CrossRef]
  8. J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE5888, 58880V, 58880V-12 (2005). [CrossRef]
  9. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt.41(7), 1291–1296 (2002). [CrossRef] [PubMed]
  10. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. Jones, “Diffractive optical element for Stokes vector measurement with a focal plane array,” Proc. SPIE3754, 169–177 (1999). [CrossRef]
  11. M. Sarkar, D. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J.11(8), 1692–1703 (2011). [CrossRef]
  12. J. S. Tyo, “Hybrid division of aperture/division of a focal-plane polarimeter for real-time polarization imagery without an instantaneous field-of-view error,” Opt. Lett.31(20), 2984–2986 (2006). [CrossRef] [PubMed]
  13. M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of Octopus retina,” IEEE Trans. Neural Netw.17(1), 222–232 (2006). [CrossRef] [PubMed]
  14. V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express18(18), 19292–19303 (2010). [CrossRef] [PubMed]
  15. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express18(18), 19087–19094 (2010). [CrossRef] [PubMed]
  16. R. Perkins and V. Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express18(25), 25815–25824 (2010). [CrossRef] [PubMed]
  17. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006). [CrossRef] [PubMed]
  18. D. Goldstein, Polarized Light (Marcel Dekker, 2003).
  19. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett.90, 611041 (2007).
  20. A. Goldberg, T. Fischer, S. Kennerly, S. Wang, M. Sundaram, P. Uppal, M. Winn, G. Milne, and M. Stevens, “Dual band QWIP MWIR/LWIR focal plane array test results,” Proc. SPIE4028, 276–287 (2000). [CrossRef]
  21. T. Weber, T. Käsebier, E. B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett.36(4), 445–447 (2011). [CrossRef] [PubMed]
  22. J. G. Ok, H. J. Park, M. K. Kwak, C. A. Pina-Hernandez, S. H. Ahn, and L. J. Guo, “Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists,” Adv. Mater. (Deerfield Beach Fla.)23(38), 4444–4448 (2011). [CrossRef] [PubMed]
  23. V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express18(18), 19292–19303 (2010). [CrossRef] [PubMed]
  24. B. E. Bayer, “Color imaging array,” U.S. Patent 3,971,065 (1976).
  25. R. Kimmel, “Demosaicing: image reconstruction from color CCD samples,” IEEE Trans. Image Process.8(9), 1221–1228 (1999). [CrossRef] [PubMed]
  26. B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating projections,” IEEE Trans. Image Process.11(9), 997–1013 (2002). [CrossRef] [PubMed]
  27. B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag.22(1), 44–54 (2005). [CrossRef]
  28. R. C. Gonzales and R. E. Woods, Digital Image Processing (Prentice Hall, 2002).
  29. B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express17(11), 9112–9125 (2009). [CrossRef] [PubMed]
  30. B. M. Ratliff, J. K. Boger, M. P. Fetrow, J. S. Tyo, and W. T. Black, “Image processing methods to compensate for IFOV errors in microgrid imaging polarimeters,” Proc. SPIE6240, 6240OE (2006).
  31. H. Hou and H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process.26(6), 508–517 (1978). [CrossRef]
  32. R. L. Burden and J. D. Faires, Numerical Analysis (Brooks Cole, 2010).
  33. T. York, S. Powell, and V. Gruev, “A comparison of polarization image processing across different platforms,” Proc. SPIE8160, 816004, 816004-7 (2011). [CrossRef]
  34. W. S. Russell, “Polynomial interpolation schemes for internal derivative distributions on structured grids,” Appl. Numer. Math.17(2), 129–171 (1995). [CrossRef]
  35. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).
  36. http://www.kodak.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited