OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26325–26342

Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model

Michael R. Gleeson, John T. Sheridan, Friedrich-Karl Bruder, Thomas Rölle, Horst Berneth, Marc-Stephan Weiser, and Thomas Fäcke  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26325-26342 (2011)
http://dx.doi.org/10.1364/OE.19.026325


View Full Text Article

Enhanced HTML    Acrobat PDF (1065 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of suitable recording media for applications such as holographic optical elements and holographic data storage are of significant research and commercial interest. In this paper, a photopolymer material developed by Bayer MaterialScience is examined using various optical techniques and then characterised using the Non-local Photo-polymerization Driven Diffusion model. This material demonstrates the capabilities of a new class of photopolymer offering high index modulation, full colour recording, high light sensitivity and environmental stability. One key result of this study is the material’s high spatial frequency resolution, indicating a very low non-local effect, thus qualifying it as a very good storage medium.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.7330) Diffraction and gratings : Volume gratings
(090.2890) Holography : Holographic optical elements
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers
(160.5335) Materials : Photosensitive materials

ToC Category:
Holography

History
Original Manuscript: July 26, 2011
Revised Manuscript: September 5, 2011
Manuscript Accepted: September 5, 2011
Published: December 9, 2011

Citation
Michael R. Gleeson, John T. Sheridan, Friedrich-Karl Bruder, Thomas Rölle, Horst Berneth, Marc-Stephan Weiser, and Thomas Fäcke, "Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model," Opt. Express 19, 26325-26342 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26325


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett.24(7), 487–489 (1999). [CrossRef] [PubMed]
  2. L. Dhar, A. Hale, K. Kurtis, M. Schnoes, M. Tackitt, W. Wilson, A. Hill, M. Schilling, H. Katz, and A. Olsen, “Photopolymer recording media for high density data storage,” in Conference Digest, Optical Data Storage, IEEE, 158–160, (2000).
  3. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design, fabrication, and performance of preferential-order volume grating waveguide couplers,” Appl. Opt.39(8), 1223–1232 (2000). [CrossRef] [PubMed]
  4. A. Sato, M. Scepanovic, and R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt.42(5), 778–784 (2003). [CrossRef] [PubMed]
  5. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt.44(16), 3197–3207 (2005). [CrossRef] [PubMed]
  6. T. D. Milster, “Horizons for optical storage,” Optics and Photonics News16(3), 28–33 (2005). [CrossRef]
  7. J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomization,” J. Opt. A, Pure Appl. Opt.8(3), 236–243 (2006). [CrossRef]
  8. STX Aprilis Inc, www.stxaprilis.com , (2006 - 2008).
  9. InPhase Technologies, www.inphase-technologies.com Tapestry Media, (2007).
  10. M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. Part 1-Regular Papers. Brief Communications. & Review. Papers.46(6A), 3438–3447 (2007).
  11. Z. Nagy, P. Koppa, F. Ujhelyi, E. Dietz, S. Frohmann, and S. Orlic, “Modeling material saturation effects in microholographic recording,” Opt. Express15(4), 1732–1737 (2007). [CrossRef] [PubMed]
  12. M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express16(4), 2829–2839 (2008). [CrossRef] [PubMed]
  13. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997). [CrossRef] [PubMed]
  14. K. Saravanamuttu, C. F. Blanford, D. N. Sharp, E. R. Dedman, A. J. Turberfield, and R. G. Denning, “Sol-gel organic-inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater.15(12), 2301–2304 (2003). [CrossRef]
  15. M. Straub, L. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater.27(3), 359–364 (2004). [CrossRef]
  16. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt.46(3), 295–301 (2007). [CrossRef] [PubMed]
  17. G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends in Poly Sci.2, 282–290 (1994).
  18. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik. Stuttgart. The. International. Journal. for. Light. And Electron. Optics.112(10), 449–463 (2001).
  19. D. H. Close, A. D. Jacobson, R. C. Magerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett.14(5), 159–160 (1969). [CrossRef]
  20. Bayer MaterialScience AG, www.bayermaterialscience.com .
  21. T. Rölle, F.-K. Bruder, T. Fäcke, M.-S. Weiser, D. Hönel and N. Stoeckel, “Photopolymerzusammensetzungen für optische Elemente und visuelle Darstellungen,” EP2 172 505 A1, (2010).
  22. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48(9), 2909–2945 (1969).
  23. L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings, Academic Press, London, (1981).
  24. R. R. A. Syms, Practical Volume Holography, (Clarendon Press, Oxford, 1990).
  25. G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt.41(10), 1929–1939 (1994). [CrossRef]
  26. I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt.45(7), 1465–1477 (1998). [CrossRef]
  27. C. R. Fernandez-Pousa, L. Carretero, and A. Fimia, “Dynamical behaviour of the optical properties of photopolymers and the Lorentz-Lorenz formula,” J. Mod. Opt.47(8), 1419–1433 (2000). [CrossRef]
  28. M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys.104(6), 064917 (2008). [CrossRef]
  29. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A17(6), 1108–1114 (2000). [CrossRef] [PubMed]
  30. M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B26(9), 1736–1745 (2009). [CrossRef]
  31. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental validation,” J. Opt. Soc. Am. B26(9), 1746–1754 (2009). [CrossRef]
  32. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B27(9), 1804–1812 (2010). [CrossRef]
  33. M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerisation in the formation of holographic gratings,” J. Opt. A10, 024008 (2009).
  34. G. Odian, Principles of Polymerization, Wiley, New York, (1991).
  35. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B25(3), 396–406 (2008). [CrossRef]
  36. F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci.40(15), 4129–4132 (2005). [CrossRef]
  37. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81(22), 4121–4123 (2002). [CrossRef]
  38. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express13(18), 6990–7004 (2005). [CrossRef] [PubMed]
  39. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B28(4), 658–666 (2011). [CrossRef]
  40. C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: part II: High frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B28(4), 842–850 (2011). [CrossRef]
  41. J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt.13(9), 095601 (2011). [CrossRef]
  42. J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental Results,” J. Opt.13(9), 095602 (2011). [CrossRef]
  43. F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE7619, 76190I, 76190I-15 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited