OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26382–26393

High-power solid-state cw dye laser

R. Bornemann, E. Thiel, and P. Haring Bolívar  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26382-26393 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1357 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the present paper we describe a high-power tunable solid-state dye laser setup that offers peak output power up to 800 mW around 575 nm with excellent long-time power stability and low noise level. The spectral width of the laser emission is less than 3 GHz and can be tuned over more than 30 nm. A nearly circular mode profile is achieved with an M2 better than 1.4. The device can be integrated in a compact housing (dimensions are 60 × 40 × 20 cm3). The limitation of long-time power stability is mainly given by photo decomposition of organic dye molecules. These processes are analyzed in detail via spatially resolved micro-imaging and spectroscopic studies.

© 2011 OSA

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3600) Lasers and laser optics : Lasers, tunable
(140.7300) Lasers and laser optics : Visible lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 21, 2011
Revised Manuscript: November 3, 2011
Manuscript Accepted: November 7, 2011
Published: December 9, 2011

R. Bornemann, E. Thiel, and P. Haring Bolívar, "High-power solid-state cw dye laser," Opt. Express 19, 26382-26393 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. G. Peterson, S. A. Tuccio, and B. B. Snavely, “Cw operation of an organic dye solution laser,” Appl. Phys. Lett. 17(6), 245–247 (1970). [CrossRef]
  2. J.-C. Diels, “Femtosecond dye lasers,” in Dye Laser Principles, Duarte & Hillman, eds. (Academic Press, 1990), pp. 41–132.
  3. J. F. Duarte, Tunable Laser Applications, 2nd ed. (CRC Press, 2009).
  4. T. Hänsch, M. Pernier, and A. Schawlow, “Laser action of dyes in gelatin,” IEEE J. Quantum Electron. 7(1), 45–46 (1971). [CrossRef]
  5. R. Bornemann, U. Lemmer, and E. Thiel, “Continuous-wave solid-state dye laser,” Opt. Lett. 31(11), 1669–1671 (2006). [CrossRef] [PubMed]
  6. G. Kytina, V. G. Kytin, and K. Lips, “High-power polymer dye laser with improved stability,” Appl. Phys. Lett. 84(24), 4902–4904 (2004). [CrossRef]
  7. T. Rabe, K. Gerlach, T. Riedl, H.-H. Johannes, W. Kowalsky, J. Niederhofer, W. Gries, J. Wang, T. Weimann, P. Hinze, F. Galbrecht, and U. Scherf, “Quasi-continuous-wave operation of an organic thin-film distributed feedback laser,” Appl. Phys. Lett. 89(8), 081115 (2006). [CrossRef]
  8. K. Yamashita, K. Hase, H. Yanagi, and K. Oe, “Optical amplification in organic dye-doped polymeric channel waveguide under cw optical pumping,” Jpn. J. Appl. Phys. 46(28), L688–L690 (2007). [CrossRef]
  9. H. Nakanotani, C. Adachi, S. Watanabe, and R. Katoh, “Spectrally narrow emission from organic films under continuous-wave excitation,” Appl. Phys. Lett. 90(23), 231109 (2007). [CrossRef]
  10. J. Yang, M. Diemeer, C. Grivas, G. Sengo, A. Driessen, and M. Pollnau, “Steady-state lasing in a solid polymer,” Laser Phys. Lett. 7(9), 650–656 (2010). [CrossRef]
  11. H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972). [CrossRef]
  12. R. Reisfeld, “Fluorescent dyes in sol-gel glasses,” J. Fluoresc. 12(3/4), 317–325 (2002). [CrossRef]
  13. M. Weiss, E. Yariv, and R. Reisfeld, “Photostability of luminescent dyes in solid-state dye lasers,” Opt. Mater. 24(1-2), 31–34 (2003). [CrossRef]
  14. S. A. El-Daly, M. K. Awad, S. T. Abdel-Halim, and D. A. Dowidar, “Photophysical properties and semiempirical calculations of perylene-3,4,9,10-tetracarboxylic tetramethylester (PTME),” Spectrochim. Acta A Mol. Biomol. Spectrosc. 71(3), 1063–1069 (2008). [CrossRef] [PubMed]
  15. M. Faloss, M. Canva, P. Georges, A. Brun, F. Chaput, and J. P. Boilot, “Toward millions of laser pulses with pyrromethene- and perylene-doped xerogels,” Appl. Opt. 36(27), 6760–6763 (1997). [CrossRef] [PubMed]
  16. M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of pyrromethene 567 and perylene orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36(24), 5862–5871 (1997). [CrossRef] [PubMed]
  17. D. Malacara, Optical Shop Testing, 3rd ed. (John Wiley & Sons, Inc., 2007).
  18. ISO 11146, Laser and laser related equipment-Test methods for laser beam widths, divergence angles and beam propagation ratios: ISO 11146–1:2005, Part 1: Stigmatic and simple astigmatic beams; ISO11146–2:2005, Part 2: General astigmatic beams; ISO/TR 11146–3:2004, Part 3: Intrinsic and geometrical laser beam classification, propagation, and details of test method; ISO/TR 11146–3:2004/Cor1:2005 (International Organization for Standardization, Geneva, Switzerland, 2005).
  19. J. Eichler, L. Dünkel, and B. Eppich, “Die Strahlqualitaet von Lasern–Wie bestimmt man Beugungsmasszahl und Strahldurchmesser in der Praxis?” Laser Technik J., 63–66 (2004).
  20. E. Thiel, Entwicklung eines inkohärent gepumpten kontinuierlichen Farbstofflasers (Universität Siegen, 1987).
  21. U. Brackmann, “Lambdachrome Laser Dyes,” (Lambda Physik, Göttingen, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited