OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26486–26499

Beating spatio-temporal coupling: implications for pulse shaping and coherent control experiments

Daan Brinks, Richard Hildner, Fernando D. Stefani, and Niek F. van Hulst  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26486-26499 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1748 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffraction of finite sized laser beams imposes a limit on the control that can be exerted over ultrafast pulses. This limit manifests as spatio-temporal coupling induced in standard implementations of pulse shaping schemes. We demonstrate the influence this has on coherent control experiments that depend on finite excitation, sample, and detection volumes. Based on solutions used in pulse stretching experiments, we introduce a double-pass scheme that reduces the errors produced through spatio-temporal coupling by at least one order of magnitude. Finally, employing single molecules as nanoscale probes, we prove that such a double pass scheme is capable of artifact-free pulse shaping at dimensions two orders of magnitude smaller than the diffraction limit.

© 2011 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5540) Ultrafast optics : Pulse shaping
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Ultrafast Optics

Original Manuscript: October 21, 2011
Revised Manuscript: November 28, 2011
Manuscript Accepted: November 28, 2011
Published: December 13, 2011

Daan Brinks, Richard Hildner, Fernando D. Stefani, and Niek F. van Hulst, "Beating spatio-temporal coupling: implications for pulse shaping and coherent control experiments," Opt. Express 19, 26486-26499 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Silberberg and D. Meshulach, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998). [CrossRef]
  2. J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002). [CrossRef] [PubMed]
  3. V. I. Prokhorenko, A. M. Nagy, S. A. Waschuk, L. S. Brown, R. R. Birge, and R. J. D. Miller, “Coherent control of retinal isomerization in bacteriorhodopsin,” Science 313(5791), 1257–1261 (2006). [CrossRef] [PubMed]
  4. D. V. Voronine, D. Abramavicius, and S. Mukamel, “Coherent control protocol for separating energy-transfer pathways in photosynthetic complexes by chiral multidimensional signals,” J. Phys. Chem. A 115(18), 4624–4629 (2011). [CrossRef] [PubMed]
  5. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998). [CrossRef] [PubMed]
  6. T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem 4(5), 418–438 (2003). [CrossRef] [PubMed]
  7. V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” ChemPhysChem 6(10), 1970–2000 (2005). [CrossRef] [PubMed]
  8. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007). [CrossRef] [PubMed]
  9. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). [CrossRef]
  10. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007). [CrossRef]
  11. P. Král, I. Thanopulos, and M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79(1), 53–77 (2007). [CrossRef]
  12. A. Greentree, S. Devitt, and L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A 73(3), 032319 (2006). [CrossRef]
  13. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288(5467), 824–828 (2000). [CrossRef] [PubMed]
  14. D. G. Kuroda, C. P. Singh, Z. Peng, and V. D. Kleiman, “Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency,” Science 326(5950), 263–267 (2009). [CrossRef] [PubMed]
  15. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007). [CrossRef] [PubMed]
  16. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010). [CrossRef] [PubMed]
  17. D. Brinks, F. D. Stefani, F. Kulzer, R. Hildner, T. H. Taminiau, Y. Avlasevich, K. Müllen, and N. F. van Hulst, “Visualizing and controlling vibrational wave packets of single molecules,” Nature 465(7300), 905–908 (2010). [CrossRef] [PubMed]
  18. R. Hildner, D. Brinks, and N. F. van Hulst, “Femtosecond coherence and quantum control of single molecules at room temperature,” Nat. Phys. 7(2), 172–177 (2011). [CrossRef]
  19. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009). [CrossRef] [PubMed]
  20. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010). [CrossRef] [PubMed]
  21. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011). [CrossRef]
  22. D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B 131, 125–131 (2000).
  23. H.-S. Tan, E. Schreiber, and W. S. Warren, “High-resolution indirect pulse shaping by parametric transfer,” Opt. Lett. 27(6), 439–441 (2002). [CrossRef] [PubMed]
  24. D. Lorenc, D. Velic, A. Markevitch, and R. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun. 276(2), 288–292 (2007). [CrossRef]
  25. T. Ganz, V. Pervak, A. Apolonski, and P. Baum, “16 fs, 350 nJ pulses at 5 MHz repetition rate delivered by chirped pulse compression in fibers,” Opt. Lett. 36(7), 1107–1109 (2011). [CrossRef] [PubMed]
  26. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1(10), 1003–1006 (1984). [CrossRef]
  27. E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969). [CrossRef]
  28. O. Martinez, “Design of high-power ultrashort pulse amplifiers by expansion and recompression,” IEEE J. Quantum Electron. 23(8), 1385–1387 (1987). [CrossRef]
  29. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994). [CrossRef] [PubMed]
  30. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26(8), 557–559 (2001). [CrossRef] [PubMed]
  31. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007). [CrossRef] [PubMed]
  32. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000). [CrossRef]
  33. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247(4948), 1317–1319 (1990). [CrossRef] [PubMed]
  34. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992). [CrossRef]
  35. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15(6), 326–328 (1990). [CrossRef] [PubMed]
  36. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300(5625), 1553–1555 (2003). [CrossRef] [PubMed]
  37. N. Krebs, R. A. Probst, and E. Riedle, “Sub-20 fs pulses shaped directly in the UV by an acousto-optic programmable dispersive filter,” Opt. Express 18(6), 6164–6171 (2010). [CrossRef] [PubMed]
  38. R. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. 3(2), 85–93 (1967). [CrossRef]
  39. P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140(4-6), 245–249 (1997). [CrossRef]
  40. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000). [CrossRef] [PubMed]
  41. F. Verluise, V. Laude, J. P. Huignard, P. Tournois, and A. Migus, “Arbitrary dispersion control of ultrashort optical pulses with acoustic waves,” J. Opt. Soc. Am. B 17(1), 138–145 (2000). [CrossRef]
  42. C. Dorrer and F. Salin, “Phase amplitude coupling in spectral phase modulation,” IEEE J. Sel. Top. Quantum Electron. 4(2), 342–345 (1998). [CrossRef]
  43. T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, “Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper,” J. Opt. Soc. Am. B 19(11), 2795–2802 (2002). [CrossRef]
  44. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. At. Mol. Opt. Phys. 43(10), 103001 (2010). [CrossRef]
  45. D. J. McCabe, D. R. Austin, A. Tajalli, S. Weber, I. A. Walmsley, and B. Chatel, “Space–time coupling of shaped ultrafast ultraviolet pulses from an acousto-optic programmable dispersive filter,” J. Opt. Soc. Am. B 28(1), 58–64 (2011). [CrossRef]
  46. O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3(7), 929–934 (1986). [CrossRef]
  47. N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, “Coherent optical control of the quantum state of a single quantum Dot,” Science 282(5393), 1473–1476 (1998). [CrossRef] [PubMed]
  48. D. Brinks, F. D. Stefani, and N. F. van Hulst, “Nanoscale spatial effects of pulse shaping,” Springer Ser. Chem. Phys. 92, 890–892 (2009). [CrossRef]
  49. B. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: considerations for quantum control,” Phys. Rev. A 77(4), 043416 (2008). [CrossRef]
  50. F. Frei, R. Bloch, and T. Feurer, “Influence of finite spatial resolution on single- and double-pass femtosecond pulse shapers,” Opt. Lett. 35(23), 4072–4074 (2010). [CrossRef] [PubMed]
  51. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).
  52. M. Wefers and K. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996). [CrossRef]
  53. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010). [CrossRef] [PubMed]
  54. D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles,” Nano Lett. 11(4), 1609–1613 (2011). [CrossRef] [PubMed]
  55. R. Hildner, D. Brinks, F. D. Stefani, and N. F. van Hulst, “Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy,” Phys. Chem. Chem. Phys. 13(5), 1888–1894 (2011). [CrossRef] [PubMed]
  56. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985). [CrossRef]
  57. M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 12(7), 1343–1362 (1995). [CrossRef]
  58. Y. Avlasevich, S. Müller, P. Erk, and K. Müllen, “Novel core-expanded rylenebis(dicarboximide) dyes bearing pentacene units: facile synthesis and photophysical properties,” Chemistry 13(23), 6555–6561 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited