OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26529–26535

Broadband near-infrared emission in Tm3+-Dy3+ codoped amorphous chalcohalide films fabricated by pulsed laser deposition

Senlin Yang, Xuefeng Wang, Haitao Guo, Guoping Dong, Bo Peng, Jianrong Qiu, Rong Zhang, and Yi Shi  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26529-26535 (2011)
http://dx.doi.org/10.1364/OE.19.026529


View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Structural and near-infrared (NIR) emission properties were investigated in the Tm3+-Dy3+ codoped Ge-Ga-based amorphous chalcohalide films fabricated by pulsed laser deposition. The homogeneous films illustrated similar random network to the glass target according to the measurements of X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. An 808 nm laser diode pumping generated a superbroadband NIR emission ranging from 1050 to 1570 nm and the other intense broadband NIR emission centered at ~1800 nm, which was attributed to the efficient energy transfer from Tm3+ to Dy3+ ions. This was further verified by the broad-range excitation measurements near the Urbach optical-absorption edge involved defect states. The results shed light on the potential highly integrated planar optical device applications of the codoped amorphous chalcohalide films.

© 2011 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Materials

History
Original Manuscript: September 6, 2011
Revised Manuscript: November 17, 2011
Manuscript Accepted: November 28, 2011
Published: December 13, 2011

Citation
Senlin Yang, Xuefeng Wang, Haitao Guo, Guoping Dong, Bo Peng, Jianrong Qiu, Rong Zhang, and Yi Shi, "Broadband near-infrared emission in Tm3+-Dy3+ codoped amorphous chalcohalide films fabricated by pulsed laser deposition," Opt. Express 19, 26529-26535 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26529


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Ramachandran and S. G. Bishop, “Excitation of Er3+ emission by host glass absorption in sputtered films of Er-doped Ge10As40Se25S25 glass,” Appl. Phys. Lett.73(22), 3196–3198 (1998). [CrossRef]
  2. A. P. Caricato, M. D. Sario, M. Fernandez, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha, “Chalcogenide glass thin film waveguides deposited by excimer laser ablation,” Appl. Surf. Sci.208–209, 632–637 (2003). [CrossRef]
  3. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express14(5), 1797–1803 (2006). [CrossRef] [PubMed]
  4. M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, “Thin chalcogenide films prepared by pulsed laser doposition: new amorphous materials applicable in optoelectronics and chemical sensors,” J. Non-Cryst. Solids352(6-7), 544–561 (2006). [CrossRef]
  5. V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser doposited thin films,” Thin Solid Films518(17), 4941–4947 (2010). [CrossRef]
  6. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  7. M. Y. Peng, G. P. Dong, L. Wondraczek, L. L. Zhang, N. Zhang, and J. R. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011). [CrossRef]
  8. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys.40(Part 2, No. 3B), L279–L281 (2001). [CrossRef]
  9. M. Y. Peng, J. R. Qiu, D. P. Chen, X. G. Meng, I. Yang, X. W. Jiang, and C. S. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004). [CrossRef] [PubMed]
  10. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006). [CrossRef]
  11. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009). [CrossRef] [PubMed]
  12. H. T. Sun, F. Shimaoka, Y. Miwa, J. Ruan, M. Fujii, J. R. Qiu, and S. Hayashi, “Sensitized superbroadband near-IR emission in bismuth glass/Si nanocrystal superlattices,” Opt. Lett.35(13), 2215–2217 (2010). [CrossRef] [PubMed]
  13. H.-T. Sun, A. Hosokawa, Y. Miwa, F. Shimaoka, M. Fujii, M. Mizuhata, S. Hyashi, and S. Deki, “Strong ultra-broadband near-infrared photoluminescence from bismuth-embedded zeolites and their derivatives,” Adv. Mater. (Deerfield Beach Fla.)21(36), 3694–3698 (2009). [CrossRef]
  14. J. Ruan, G. P. Dong, X. F. Liu, Q. Zhang, D. P. Chen, and J. R. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett.34(16), 2486–2488 (2009). [CrossRef] [PubMed]
  15. B. Zhou, H. Lin, B. J. Chen, and E. Y. B. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express19(7), 6514–6523 (2011). [CrossRef] [PubMed]
  16. B. Zhou and E. Y. B. Pun, “Superbroadband near-IR emission from praseodymium-doped bismuth gallate glasses,” Opt. Lett.36(15), 2958–2960 (2011). [CrossRef] [PubMed]
  17. H. T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2), 100–102 (2011). [CrossRef] [PubMed]
  18. L. H. Huang, A. Jha, S. X. Shen, and X. B. Liu, “Broadband emission in Er3+-Tm3+ codoped tellurite fibre,” Opt. Express12(11), 2429–2434 (2004). [CrossRef] [PubMed]
  19. Y. S. Xu, D. P. Chen, W. Wang, Q. Zhang, H. D. Zeng, C. Shen, and G. R. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett.33(20), 2293–2295 (2008). [CrossRef] [PubMed]
  20. T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett.86(13), 131903 (2005). [CrossRef]
  21. Y. X. Zhuang, Y. Teng, J. Luo, B. Zhu, Y. Z. Chi, E. Wu, H. P. Zeng, and J. R. Qiu, “Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4:Cr4+ nanocrystals,” Appl. Phys. Lett.95(11), 111913 (2009). [CrossRef]
  22. S. F. Zhou, N. Jiang, B. T. Wu, J. H. Hao, and J. R. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater.19(13), 2081–2088 (2009). [CrossRef]
  23. G. P. Dong, B. T. Wu, F. T. Zhang, L. L. Zhang, M. Y. Peng, D. D. Chen, E. Wu, and J. R. Qiu, “Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses,” J. Alloy. Comp.509(38), 9335–9339 (2011). [CrossRef]
  24. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater.24(3), 563–574 (2003). [CrossRef]
  25. M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M. Mikulla, and J. Wagner, “High-power 1.9-μm diode laser arrays with reduced far-field angle,” IEEE Photon. Technol. Lett.18(4), 628–630 (2006). [CrossRef]
  26. J. Z. Wang, Y. Xia, Y. Shi, Z. Q. Shi, L. Pu, Z. S. Tao, and F. Lu, “1.54 μm photoluminescence emission and oxygen vacancy as sensitizer in Er-doped HfO2 films,” Appl. Phys. Lett.91(19), 191115 (2007). [CrossRef]
  27. H. T. Guo, L. Liu, Y. Q. Wang, C. Q. Hou, W. N. Li, M. Lu, K. S. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+-doped and Dy3+, Tm3+-codoped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express17(17), 15350–15358 (2009). [CrossRef] [PubMed]
  28. H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B138(3), 235–240 (2007). [CrossRef]
  29. X. F. Wang, S. X. Gu, J. G. Yu, X. J. Zhao, and H. Z. Tao, “Structural investigations of GeS2-Ga2S3-CdS chalcogenide glasses using Raman spectroscopy,” Solid State Commun.130(7), 459–464 (2004). [CrossRef]
  30. T. H. Lee, Y. K. Kwon, and J. Heo, “Local structure and its effect on the oscillator strengths and emission properties of Ho3+ in chalcohalide glasses,” J. Non-Cryst. Solids354(27), 3107–3112 (2008). [CrossRef]
  31. J. H. Song and J. Heo, “Effect of CsBr addition on the emission properties of TM3+ ion in Ge-Ga-S glass,” J. Mater. Res.21(09), 2323–2330 (2006). [CrossRef]
  32. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).
  33. J. Tauc, Amorphous and Liquid Semiconductors (Plenum, New York, 1974).
  34. S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. G. Bishop, “Novel broad-band excitation of Er3+ luminescence in chalcogenide glasses,” Appl. Phys. Lett.66(6), 670–672 (1995). [CrossRef]
  35. S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by broadband Urbach edge absorption,” J. Non-Cryst. Solids266–269, 876–883 (2000). [CrossRef]
  36. J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids212(2-3), 151–156 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited