OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 27 — Dec. 19, 2011
  • pp: 26645–26650

Field-driven all-optical wavelength converter using novel InGaAsP/InAlGaAs quantum wells

Tsu-Hsiu Wu, Jui-Pin Wu, and Yi-Jen Chiu  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26645-26650 (2011)
http://dx.doi.org/10.1364/OE.19.026645


View Full Text Article

Enhanced HTML    Acrobat PDF (1212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new type of semiconductor quantum well (QW) for high-speed all optical wavelength converter (AOWC) is proposed and demonstrated in this work. Based on InGaAsP (well)/InGaAlAs (barrier) multiple QW, large electron band offset ratio relative to heavy hole can be attained to shorten sweep rate of photocarrier driven by electric field, realizing high-speed efficient AOWC through cross absorption modulation (XAM). By such QWs, an optical waveguide with high-speed electrode connection is fabricated. A −3dB bandwidth of 38 GHz with 8V bias in time-varying photocurrent and all optical response is observed. The corresponding sweep time is less than 10ps, consistent with calculated tunneling rate of QW and thus confirming high sweep rate through field-driven tunneling processing. All-optical conversion with error-free 40Gb/s data transmission and −11dB of conversion efficiency in system performance is also attained in this device, suggesting that such AOWC has potential for 100Gb/s application.

© 2011 OSA

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.4205) Optical devices : Multiple quantum well (MQW) modulators
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Optical Devices

History
Original Manuscript: October 5, 2011
Revised Manuscript: November 18, 2011
Manuscript Accepted: November 20, 2011
Published: December 14, 2011

Citation
Tsu-Hsiu Wu, Jui-Pin Wu, and Yi-Jen Chiu, "Field-driven all-optical wavelength converter using novel InGaAsP/InAlGaAs quantum wells," Opt. Express 19, 26645-26650 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-27-26645


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol.4(2), 204–214 (1998). [CrossRef]
  2. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003). [CrossRef]
  3. M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, “Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” Electron. Lett.42(11), 657–658 (2006). [CrossRef]
  4. M. Hattori, K. Nishimura, R. Inohara, and M. Usami, “Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter,” J. Lightwave Technol.25(2), 512–519 (2007). [CrossRef]
  5. A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, “Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation,” IEEE J. Quantum Electron.42(3), 313–323 (2006). [CrossRef]
  6. J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett.19(24), 1955–1957 (2007). [CrossRef]
  7. M. Spyropoulou, N. Pleros, K. Vyrsokinos, D. Apostolopoulos, M. Bougioukos, D. Petrantonakis, A. Miliou, and H. Avramopoulos, “40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: Theory and experiment,” J. Lightwave Technol.29(10), 1489–1499 (2011). [CrossRef]
  8. G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photon. Technol. Lett.17(12), 2652–2654 (2005). [CrossRef]
  9. B. E. Olsson and D. J. Blumenthal, “WDM to OTDM multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photon. Technol. Lett.13(9), 1005–1007 (2001). [CrossRef]
  10. K. K. Chow and C. Shu, “All-optical signal regeneration with wavelength multicasting at 6x10 Gb/s using a single electroabsorption modulator,” Opt. Express12(13), 3050–3054 (2004). [CrossRef] [PubMed]
  11. J. Yu, Z. Jia, and G. K. Chang, “All-optical mixer based on cross-absorption modulation in electroabsorption modulator,” IEEE Photon. Technol. Lett.17(11), 2421–2423 (2005). [CrossRef]
  12. H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, “40-Gb/s NRZ wavelength conversion with 3R regeneration using an EA modulator and SOA polarization-discriminating delay interferometer,” IEEE Photon. Technol. Lett.18(2), 337–339 (2006). [CrossRef]
  13. K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron.11(1), 278–284 (2005). [CrossRef]
  14. N. E. Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B.-E. Benkelfat, and A. Ramdane, “New design of InGaAs–InGaAlAs MQW Electroabsorption modulator for high-speed all-optical wavelength conversion,” IEEE Photon. Technol. Lett.16(10), 2302–2304 (2004). [CrossRef]
  15. S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well Electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron.8(6), 1265–1276 (2002). [CrossRef]
  16. T. Otani, T. Miyazaki, and S. Yamamoto, “Optical 3R regenerator using wavelength converters based on Electroabsorption modulator for all-optical network applications,” IEEE Photon. Technol. Lett.12(4), 431–433 (2000). [CrossRef]
  17. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, 3rd ed. 178–181 (1977).
  18. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: Relation to Electroabsorption and exciton saturation,” IEEE J. Quantum Electron.27(10), 2281–2295 (1991). [CrossRef]
  19. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter32(2), 1043–1060 (1985). [CrossRef] [PubMed]
  20. J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron.35, 771–782 (1999). [CrossRef]
  21. F.-Z. Lin, Y.-J. Chiu, S. A. Tsai, and T.-H. Wu, “Laterally tapered undercut active waveguide fabricated by simple wet etching method for vertical waveguide directional coupler,” Opt. Express16(11), 7588–7594 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited